USER’S MANUAL
uPD70108
uPD70116

NEC ELECTRONICS (EUROPE) GMBH

USER'S MANUAL

uPD70108
MPD70116

3/85 V1.0

VOLUME OF PAGE

Pages
i-iv
Chapter 1 10
2 12
3 8
4 7
5 5
6 11
7 4
8 1
9 4
10 11
11 4
12 i - viii & 329
13 10
A
B

TOTAL 436

2.24
2.25
2.26
2.27

Table of Contents

Chapter 1 General

FeatUres .cceeeeecrcccerscrscsssccsosons
Pin Configuration of uPD70108/70116 ...
Blcck Diagram of uPD70108/70116

Chapter 2 Pin Functions

Al5-A8 (AddAress BUS) ..vevsccsessssanes
AD7-ADO0 (Address/Data BUS) ..eceveecees
AD15-AD0 (Address/Data BUS) .eveveceoas
NMI (Nonmaskable Interrupt) ...ceeesces
INT (Maskable Interrupt) ...ecieeesescss
CLK (ClOCK) teeeececenccnascaccsansnnas
RESET (Re€S€t) tuveereccnsessnennnnessas
READY (Re@dY) eeesvessccesascnnncocnnns
POLL (POLL) tuveuvuvnnconnnnasosocanaan
RD (Read StIOBE) teveeeeseeeeenevenenns
S/LG (SMAall/LArge) «eeeveeeeeaennncnnan
INTAK (Interrupt Acknowledge)
ASTB (Address Strobe)ceeeeeneneans
BUFEN (Buffer Enable) ...eeeeeeeencoess
BUFR/W (Buffer Read/Write)

SIO/M (IO/MEMOTY) ceveveenoncnronnnnnnns

IO/M (IO/MEMOYY) «ereevennnsecasnennnes
WR (Write Strobe) ceeeeeeeeseeeneecnnns
HLDAK (Hold Acknowledge)cece.. .
HLDRQ (Hold Request) .ieeveececcoccoens
LBSO (Latched Bus Status 0)
TUBE (Upper Byte Enable) .eeeeveeeeoeeen.
A19/PS3 - Al6/PSO

(Address Bus/Processor Status)
QS1, QSO0 (Queue StatuS) .eeeveeseecacas
BS2-BSO0 (Bus Status) ...cieceivecroncaeas
BUSLOCK (BUS LOCK) eevevnveensnnsennnnns
RQ/AK1, AKO (Hold Request/Acknowledge)

.

.

.

.

NN
1 1 ! 1 1 ! 1 U 1 1
[y

1 I I 1 | || 1 1

|
© O N N N J O U E SR W W W N R

N NN NN NN NDDNDDNNDDNDDNDNDDNDNDDNDNNDDNDN

2-9

2-10
2-11
2-11
2-12

Page
2.28 VDD (POWEIr SUPPLY) cecceveecencioanncceannaancoaconnss 2=12

2.29 GND (Ground) ..ceveesosessessessscsssssossnsnsaseas 2=12
2.30 IC (Internally Connected) .ieeeeeceesesosencecansnes 2=12

Chapter 3 Functions of Internal Block

Program Counter (PC) ...eieeeccsccenssssasnannanses 3=2
Prefetch Pointer (PFP) .uvieeececnsenccnansnnnasass 3=2
Q0 - Q3/Q0 - Q5 (Perfetch QuUeUE) ...ivievvscrccecoes 3=2
DP (Data POinter) ..ieeeeesscesecsesssascssensoanas 3=3
3-3
3-3
3-4

.

TEMP (Temporary Communication Register)

Segment Registers (PS, SS, DSO, and DS1) .ieeeeeeae
ADM (Address Modifier)ivecesrecsececccccncacans
General-Purpose Registers

(AW, BW, CW, and DW) ..ceeecececeosssccaccncnseneees 3=4
Pointers (SP, BP)

and Index Registers (IX, IY) ceveeeeececocncnoaaaees 3=5
3.10 TA/TB (Temporary Register/Shifter A,B) ...ceeeeees. 3-5
3.11 TC (Temporary Register C) ...eeveeesvesscscccnnnaee 3-6
3.12 ALU (Arithmetic Logic UnRit) ceeeieeceeeceseoencensee 3=6
3.13 Program Status Word (PSW) .eeeeeeveeeccacaccaanease 3-6

W W w wwwwuw
. . .
W N O Ul bW N

w
.
(o)

3.14 LC (LoOp COUNLEr) .teveeieseesresoccossosanesnnannnee 3=7
3.15 EAG (Effective Address Generator) ...ececsceseecess. 3-8
3.16 Instruction DECOAErcesverveaseacssacesasneennss 3-8
3.17 Microaddress registereeeececececeerecncannenes 3-8
3.18 Microinstruction ROM ..uieeeceeeceeeeeeoacncnnenenas 3-8
3.19 Microinstruction sequence circuiteeceeeeeees 3-8

Chapter 4 Configuration of Memory and Input/Output

4.1 Memory Configuration and ACCESS .veeeevecenseseaass 4-1
4.2 1I/0 Configuration and ACCESSING .veeeeeeeeeesesnees 4=6

Chapter 5 Read/Write Timing of Memory and Input/Output

Chapter 6 Interrupts

6.1 INT INtErrUPES ..uveeecececesssonvsccnscnasannnanss 6=3

- ii -

Page

6.2 BRK Flag (Single-Step) Interruptcccececsccccen 6-8
6.2 Timing That Does Not Accept Interrupts 6~-9
6.4 Interrupt Process During Block Transfer

InStruction EXECULion .eveeeeeeeecsscsccnsssssonssss 6-10

Chapter 7 Standby Function

7.1 Setting Standby MOAE ...ceceeerseracccossaresccnses 1=l
7.2 Standby MOGE ..ceetvecessncscnsoscssssssassosceness /=1
7.3 Releasing Standby Mode by

External Interrupt INPUL .eeeeecesesacoccossossosss 7=3
7.4 Releasing Standby Mode by RESET Inputcccecocee 7-4

Chapter 8 Reset Operation

Chapter 9 Logical and Physical Addresses

Chapter 10 Addressing

10.1 INStruction AAQATESS veeevecessvoosssosssssosssaasss 10-1
10.2 Memory Operand AddreSS ..cceocecececcsencsacancansanse 10-4

Chapter 11 Implementation of Faster Execution

11.1 Dual Data Bus Method ...eeecessvocessessosssecnasass 11=2
11.2 Effective Address Generatoreesveeeeecececcsseas 11-3
11.3 16/32-Bit Temporary Registers/Shifters

(TA, TB) ceeeeescccccsacessosnosescscnsnsassssnnnsscasss 11-3
11.4 Loop Counter (LC) +ivveeescocceccosassonscsansasass 114
11,5 PC And PFP .vveeeereessasossssnssssosanssesosasnsss 11-4

Chapter 12 Instructions

12.1 Data Transfer .INStrUCtiONS cieeeececessosevsssocasess 12-1

12.2 Repeat PrefiX .eeeeeeseescosceoacsssscanacasssaaosess 12=21
12.3 Premitive Block Trasnfer Instructionseee... 12-28
12.4 Bit Field Manipulation Instructionscecee.... 12-38
12.5 Input/Output INStructions ...c.eceveieecececccoscenss 12-46

- iii -

12.6 Primitive Input/Output Instructionsceeeeeens

12.7 Addition/Subtracion INStructiCns .eeeeeeceeccaceans

12.8 BCD Operation INStruCtion .seiseceecsesocososossanaas

12.9 Increment/Decrement Instructionscceeeeeeeces

12.10 Multiplication Instructionsceeeeecnnnnnns

12.11 tivision Instructions

L R I I R R R e N

12.12 BCD Adjust INstructionsc.cereresccesoascnans
12.13 Data Conversion INStrUCtiONS ..cceeeeecccescocconans

12.14 Comparison INStrUCtiONS .u.eeeeesereceacccncnsnans

12.15 Complement Operation INStructions ...seeeesesscsss

12.16 Logical Operation INstructionseeeesesscecsaes

12,17 Bit Manipulation INsStruUCtionNS i.eceeececcscecosons

12.18 Shift INStrUCtiONS tiiiereeeeecececacnesoncaanenns

12.19 Rotate INStrUCtiONS soeeerreecccscossonnosscasnsoess

12.20 Subroutine Control INsStructions ...eeeeeceeccocecss

12.21 Push INStruCtionS .t.eeseeesoencssscocaccacnsccnnns

12.22 Branch INStructionsS ..eseeeecseececccsensoscsonscse

12.23 Load and Branch Instructions ...c.ceececevsccences

12.24 Break INStruCtions iuiiveeeeseeesenseessensosacnnnnns

12.25 CPU Control INStruUCtionS .suiceeeeeeeeeccecoccnonens

12.26 Segment Override PrefiX ...iieeeeceeccecceacocannns

12.27 Emulation Mode INStruUCtionsS ...eeeeeeeerooconncnns

Chapter 13 uPD8080AF Emulation

13.1 From Native to Emulation MOAe ...c.eeveeiscecenoanse
13.2 From Emulation Mode to Native MOde ...eeocecacecss

13.3 Emulation MOGE teeieceseesccsccecacnconsonnnsances

Appendix A List of uPD70108/70116 Instruction Mnemonics

Appendix B Index of uPD70108/70116 Instructions
(In Alphabetical Order) .sieieeeeroceseceasoeeccesoonacsans

Appendix C Instruction Set

L I R N N T S ST AR A

- iv -

13-1
13-4
13-7

Chapter 1 General

The uPD70108/70116 is a CMOS 8/16-bit microprocessor provided
with 8/16-bit architecture and an 8-bit data bus. The
uPD70108/70116 has a powerful instruction set including bit
processing, packed multi-digit BCD operations, high-speed
multiplication/division operations, and variable bit field
operations, realizing flexible processes of various
applications at high speeds. As one of the features this
microprocessor offers, the hardware incorporates a
multiplication/division circuit and an effective address
generator. Additionally, an internal dual bus system is
employed.

The uPD70108/70116 also has emulation functions of an uPD808OAF
and comes with a standby mode that significantly reduces power
consumption. The uPD70108 and uPD70116 are software-compatible
with one another.

This document introduces a new product, still under
development, and its functions. The descriptions are therefore
subject to change without advance notice.

1-1

1.1 Features

(1) 8-bit bus microprocessor: uPD70108

(2) 16-bit bus microprocessor: uPD70116

(3) Minimum instruction execution time: 400 ns

(at 5MHz/5V)

(4) Maximum addressable memory: 1M byte

(5) Abundant memory addressing modes

(6) 14- x 16-bit register set

(7) 101 instructions

(8) Bit field operation instructions: Data transfer

between 1- to 16-bit fields of the memory and
accumulator

(9) Packed BCD operation instruction: Addition,

subtraction, and comparison of 1- to 255-digit BCD
strings

(10) High-speed multiplication/division instruction

(exclusive hardware is incorporated): 6 to 8 us
(at 5MHz/5V)

(11) ;nter—memory high-speed block transfer:

uPD70108: 625K bytes/sec (at 5MHz/5V)
uPD70116: 625K words/sec (at 5MHz/5V)

(12) Bit operation instruction: 8- or 16-bit register
Any bit of the memory can
be set, cleared, inverted,
and tested.

(13) High-speed calculation of effective addresses:

Exclusive hardware is incorporated.
(14) Abundant interrupt processing functions:
External interrupt: NMI (non-maskable interrupt),
INT (maskable interrupt)
Interrupt by software: BRK (unconditional)
BRKV (when V=1)
BRKEN (emulation)
CHKIND (array index check)
CALLN (native routine call)
(15) IEEE-796 bus-compatible interface

(16) Two operation modes
° Native mode: executes instruction set of
uPD70108/70116.
° Emulation mode: executes instruction set of
uPD808OAF.

The mode can be changed by a mode-change

instruction (such as BRKEM and RETEM) and an

external interrupt.

(17) Standby function: Program standby (halt function)
Results in reduced power
consumption (approximately 1/10 of
normal operating current
consumption.) -

(18) CMOs

(19) Low power consumption

(20) Single power source: 3 to 6V

(21) S5MHz clock: duty cyck 50%

(22) 40-pin plastic DIP

1.2 Pin Configuration of uPD70108/70116

(Top View)
T \S

ICo—— 1 40 —o Vpp

Al40—— 2 39— a15
Al3o— 3 38—0 A16/PS0
Al2o0—i 4 37T——c A17/PS1
Allo—— 5 360 A18/PS2

Al10 o—— § 350 A19,/PS3

A9 o— 7 34— LBSO0(HIGH)
A8 o— 38 33— 3/LG

ADT o—— 9 32——o RD)
AD6 =10 170105 31 HLDRQ(RQ AKD)
ADS o——11 30— HLDAK(RQ/AK1)
AD4 0——12 29— WR(BUSLOCK)
AD3 o——13 28— IO0/M(BS2)
AD2 o——14 27——0 BUFR/W(BS1)
AD1 o———{15 26— BUFEN(BSO)
ADO o—— 16 250 ASTB(QS0)
NMI o—{17 24——0 TNTAK(QS1)
INT o——{18 23— POLL
CLKo——19 22}——0 READY

GND o—— 20 21— RESET

(Top View)
Y4

ICo— 1 40— Vpp
AD14 o— 2 39f~—0 AD15
AD13 o——= 3 38—0 A16,/PS0
AD1 2 o— 4 37T——0 A1 7/PS1
AD11 O—- 5 36——0 A18/PS2
AD10 o~—— 6 85—0 A19,/PS3

AD9 o—~ 7 34——o UBE

AD8 o— 8 33—o s/LG

AD7 o—~ 9 32— RD

AD6 o——10 o 0116 31— HLDRQ(RQ/AKD)
AD5 o—=11 30— HLDAK(RQ/AKI1)
AD4 o—12 29——o WR(BUSLOCK)
AD3 o—13 28— TO/M(BS2)
AD2 o—14 27— BUFR/W(BS1)
AD1 o——15 26— BUFEN(BSO0)
ADO o——16 25——0 ASTB(QS0)
NMI o—17 24— INTAK(QS1)
INT o—18 23— POLL
CLKo—-19 22~——0 READY

GND o——{20 21— RESET

1.3 uPD70108/70116 Block Diagram

Internal Address/
Data Bus (IADO-19)

A16/PS0-A19/PS3

1 —BUS = A8-A1S
BUFFER
[5N o
LBSO ~
BUFEN(BS0), BUFR,/ W (BS1)
! - > 10/M(BS2)
PS ASTB(QS0) , TNTAR(QS1)
S S STATUS RD,WR(BUSLOCK:
DSO CONTROL
e —
PEFP RESET
P DP POLT
TEMP
Qo Ql T-state | [Bus HoLD [—— HLDRQ(RQ AKO)
Q2 Q3 CONTROL | | 'CONTROL HLDAK(RQ/AKT1)
0N
CYCLE | [INTERRUPT NMI
g — DECXKjION CONTROL INT
1
] QUEUE STANDBY .
=< ‘ coN'raox.} [CONTROL l CLK
°e BCU
AW it
BW EXU
[DFFFECTIVE ADDRESj
DW e GENERATOR
1X
1Y 1>:
B P g
SP kS -
EZ| |+ INSTRUCTION C
? 28 sromc [Micro-data Bus
g |
TC 1} -5
£ |=
| TAcueres| — =
gl —— g _
g 4 SEQUENCE
w CONTROL
&
ALU)
_b INSTRUCTION DECODER
] - e
esw k>
U L)
Sub-data Bus Main (E%?a Bus

(16)

uPD70108 Block Diagram

Internl Address/
Data Bus (IAD0-19)

e A16/PS0-A19/PS3
BUFFER
ADM KIE> ADO-AD15
/ \ UBE .
(I (}:::J BUFEN(BS0) , BUFR-W(BS1)
. . [T > [0,M(BS2)
PS ASTB(QS0) , INTAR(QS1)
Ss STATUS RD,WR(BUSLOCK)
DSO IR CONTROL
DS1 E)- — S/LG
~——— READY
— D P — POLL
TEMP I
Q0 Q1 T-STATE Bus goLp(—— HLDRQ(RQ/AK0)
Q2 Q3) CONTROL CONTROL |y} naAK(RD ikD)
Q4 Q5 A}
l: | | cYcLE INTERRUPT [~ — NMI
* | |DECISION CONTROL | _____ INT
v T DBY
[QUEUE STAN
=t CONTROL {m%_l_ CLK
P BCU
AW 2
BW ‘ XU
W EFFECTIVE ADDRESS
3 DW K> GENERATOR B
— 1X
1Y R
B P S
SP == INSTRUCTION ;
SES] # Micro-data Bus
Sa STORAGE
©c -
& (2]
TC 0o (=3
TA S— § |3
——~—————SHIFTER,
TB g
g #SEQUENCE
o CONTROL
=}
2]
U/ 5
L~ INSTRUCTION DECODER
) - e
[rsw k—>.
o d L
Sub-data Bus Main Data Bus
(16) (16)

uPD70116 Block Diagram

1.4 uPD70108 Pin Identification

No.

17

18

19

20

N
N

24

25

26

27

28

Symbol
IC
Al4-A8
AD7-ADO
NMI
INT
CLK
GND

RESET

INTAK (QSsl)

ASTB

(Qs0)

BUFEN (BSO)

BUFR/W (BS1)

I0/M (BS2)

Direction Function

Oout

In/Out

In

In

In

Out

Oout

Out

Out

Out

Internally Connected

Address Bus, Middle Bits

Address/Data Bus

Nonmaskable Interrupt Input

Maskable Interrupt Input

Clock Input

Ground Potential

Reset Input

Ready Input

Poll Input

Interrupt Acknowledge Output
(Queue Status Bit 1 Output)

Address Strobe Output (Queue
Status Bit 0 Output)

Buffer Enable Output (Bus Status
Bit 0 Output)

Buffer Read/Write Output (Bus
Status Bit 1 Output)

Access is I/0 or Memory (Bus
Status Bit 2 Output)

29 WR (BUSLOCK) out Write Strobe Output (Bus Lock
Output)

30 HLDAK (RQ/AK1) out Hold Acknowledge Output (Bus
(In/Out) Hold Request Input
/Acknowledge Output 1)

31 HLDRQ (RQ/AKD) In Hold Request Input (Bus Hold
(In/Out) Request Input/Acknowledge
Output 0)
32 RD Out Read Strobe output
33 s/LG In Small-scale/Large-scale

System Input

34 LBSO (HIGH) In Latched Bus Status Input 0
(Always High in Large-scale
Systems)

35-38 Al9/PS3 - Al6/PSO Out Address Bus, High Bits or

Processor Status Output
39 Al5 Out Address Bus, Bit 15
40 VDD - Power Supply
Note: Where pins have different functions in small- and

large~-scale systems, the large-scale system pin name and
function are in parentneses.

1.5uPD70116 Pin Identification

No.

17

18

19

20

21

22

23

24

25

26

27

28

Symbol
IC
AD14-ADS
AD7-ADO
NMI

INT

CLK

GND
RESET
READY
POLL

INTAK (QS1)

ASTB (Qs0)

BUFEN (BS0)

BUFR/W (BS1)

I0/M (BS2)

Direction Function

In/Out

In/Out

In

In

In

In

In

In

Out

Out

out

Oout

Out

Internally Connected

Address/Data Bus

Address/Data Bus

Nonmaskable Interrupt Input

Maskable Interrupt Input

Clock Input

Ground Potential

Reset Input

Ready Input

Poll Input

Interrupt Acknowledge Output
(Queue Status Bit 1 Output)

Address Strobe Output (Queue
Status Bit 0 Output)

Buffer
Status

Enable Output (Bus
Bit 0 Output)

Buffer
Status

Read/Write Output (Bus
Bit 1 Output)

Access
Status

is I/0 or Memory (Bus
Bit 2 Output)

29

30

31

32

33

34

35-38

39

40

WR (BUSLOCK)

HLDAK (RQ/AK1)

HLDRQ (RQ/AKO)

s/LG

UBE

Al19/PS3~A16/PS0O

AD15

VDD

out

Out
(In/Out)

In
(In/Out)

Out

In

In

Out

In/Out

Write Strobe Output (Bus Lock
OQutput)

Hold Acknowledge Output (Bus
Hold Request Input/Acknowledge
Output 1)

Hold Request Input (Bus Hold
Request Input/Acknowledge
Output 0)

Read Strobe output

Small-scale/Large-scale System
Input

Upper Byte Enable

Address Bus, High Bits or

Dra~acao Qratssas N
rrOCeSSUL otactus v

Address/Data Bus

Power Supply

Note: Where pins have different functions in small- and

large-scale systems, the large-scale system pin name and

function are in parentneses.

1-10

Chapter 2 Pin Functions

This chapter describes the function of each uPD70108/70116 pin.
Unless otherwise specified, these descriptions are applicable
to both the uPD70108 and the uPD70116.

Because the bus width of the uPD70108 and uPD70116 are not the
same, each microprocessor uses the bus for both address and
data in its own particular way.

Moreover, the memory identification signals for the two
microprocessors also are different; the uPD70108 uses an I0/M
signal while the uPD70116 uses an TO/M signal. Some pins of
both microprocessors are exclusively used depending on whether
the microprocessors are mounted in a small- or large-scale
system. Other pins function in either system.

2.1 Al15-A8 (Address Bus) ... For small- and large-scale systems
(This description applies to the uPD70108 only)

The CPU uses these pins to output the middle 8 bits of the
20-bit address information. They are three-state output and
become high impedance during hold acknowledge.

2.2 AD7-ADO (Address/Data Bus) ... For small- and large-scale
systems

(This description applies to the uPD70108 only)

The CPU uses these pins as the time multiplexed address and

data bus. They output the lower 8 bits of the 20-bit address

information and 8-bit data.

Input/Output operation of 16-bit data is performed in two

steps. The low byte is sent first, followed by the high byte.

These pins are three-state I/O and become high impedance during

hold and interrupt acknowledge.

2.3 AD15-AD0 (Address/Data Bus) ... For small- and large scale
- systems.
(This description applies to the uPD70116 only)
The AD15-AD0 is a time-multiplexed Address/Data bus. This
performs output of lower 16 bits of 20 bits address information
and input/output of byte or word data. The uPD70116 locates
memory and I/O operand to a byte-data bank to be accessed with
even address (AD0=0) and a byte-data bank to be accessed with
odd address (ADO=1) . The LSB(ADO) has no meaning as a word
data address but used for selecting the odd or even address
bank. The UBE (Upper Byte Enable) signal is provided to access
byte/word data besides ADO. This is used as the combination of
the following table.

Operand UBE | ADO |No. of Bus Cycle
Word of Even Address 0 0 1
0 1*
Word of 0Odd Address 1 0** 2
Byte of Even Address 1 0 1
Byte of 0dd Address 0 1 1

*: First Time **: Second Time

A word operand in odd address is performed via two consecutive
access of odd-byte bank and even-byte bank. In this case,

first ADO=1 showing odd bank address is output, and second ADO=1
showing continuous even bank address is output automatically. These
outputs are held to high or low level in the standby mode.

These are 3-state output and becomes high impedance in the hold
acknowledge and interrupt acknowledge states.

2.4 NMI (Nonmaskable Interrupt) ... For small- and large-scale
systems

This pin is used to input nonmaskable interrupt requests. NMI
cannot be masked by software. This input is active at the
rising edge of a signal and can be sensed during any clock
cycle. Actual interrupt processing begins, however, after
completion of the instruction in progress.

The contents of interrupt vector 2 determines the starting
address for the interrupt-servicing routine. Note that a hold
request will be accepted even during NMI acknowledge.

This interrupt can be used to release the standby mode.

2.5 INT (Maskable Interrupt) ... For small- and large-scale
systems

This pin is used to input an interrupt request that can be
masked by software.

This input is active high level and is sensed during the last
clock of the instruction. The interrupt will be accepted if
the system is in interrupt enable state (if the interrupt
enable flag (IE) is set). The CPU outputs the INTAK signal to
inform external devices whether the interrupt request has been
acknowledged.

The priority of interrupts is shown below. If NMI and INT
interrupts occur at the same time, NMI has priority and INT can
not be accepted. A hold request will be accepted even during
INT ackowledge.

INT < NMI
This interrupt can be used to release the standby mode.

2.6 CLK (Clock) ... For small- and large-scale systems

This pin is used for external clock input.

2-3

2.7 RESET (Reset) ... For small- and large-scale systems

This pin is used to input the CPU reset signal, which is active
high level.Input of this signal has priority over all other
operations. After the reset signal input returns to low level
the CPU begins execution of the program starting at address
FFFOH.

In addition to the use during normal CPU start, the RESET input
can be used to release the standby mode.

2.8 READY (Ready) ... For small- and large-scale systems

READY indicates that the data transfer is completed. When the
signal goes high during read cycle, the data is latched one
clock cycle later and the bus cycle terminated.

When the signal goes high during write cycle, the bus cycle is
terminated.

2.9 POLL (Poll) . . . For small- and large-scale systems

The CPU checks the input at this pin by the execution of the
POLL instruction. If the input is low level, execution
continues. If the input is high level, the CPU will check the
POLL input every five clock cycles until the input becomes low
again.

These functions are used to synchronize CPU program execution
with the operation of external devices.

2.10 RD (Read Strobe) ... For small- and large-scale systems

The CPU outputs this strobe signal during data read from an I/0
device or memory. The IO/M signal is used to select between
I/0 and memory. This pin's output is three state and becomes
high impedance during hold acknowledge.

2.11 S/LG (Small/Large) ... For small- and large-scale systems

This signal determines the operaticn mode of the CPU. This
signal is fixed at either high or low level. When this signal
is high level, the CPU will operate in small-scale system mode,
and when low level, in large-~scale system mode.

Pins 24 to 31 and pin 34 function differently depending on the
operating mode of the CPU. Separate nomenclature is adopted
for these signals in the two operation mades.

Pin Function
No. S/LG- high S/LG-1low
24 INTAK Qs1

25 ASTB Qs0

26 BUFEN BSO

27 BUFR/W BS1

28 I0/M,I0/M BS2

29 WR BUSLOCK
30 HLDAK RQ/AK1
31 HLDRQ RQ/AKO
34 LBSO Always high

Note 1. IO/M for uPD70108. IO/M for uPD70116.
2. LBSO for uPD70108.

2.12 INTAK (Interrupt Acknowledge) ... For small-scale systems

The CPU asserts the INTAK signal active low when it accepts an
INT signal.

The external device synchronizes with this signal and outputs
the interrupt vector to the CPU via the data bus (AD7-ADO).
This output is held to high level in the standby mode.

2.13 ASTB (Address Strobe) ... For small-scale systems

The CPU outputs this strobe signal to latch address information
at an external latch.
This output is held to high level in the standby mode.

2.14 BUFEN (Buffer Enable) ... For small-scale systems

This is used as the output enable signal for an external
bidirectional buffer. The CPU outputs this signal during data
transfer operations with an external memory or I/0 device or
during input of a interrupt vector.

This output is held to high level in the standby mode.

2.15 BUFR/W (Buffer Read/Write) ... For small-scale systems

The output of this signal determines the direction of data
transfer with an external bidirectional buffer. A high output
specifies transmission from the CPU to the external device,
while a low signal specifies reception from the external device
to the CPU.

This output is held to high or low level in the standby mode.

2.16 IO/M (IO/Memory) ... For small-scale systems

(This description applies to the uPD70108 only)
The CPU outputs this signal to specify either I/O access or
memory access. A high-level output specifies I/O access and a

low-level signal specifies memory access.
This output is held to high or low level in the standby mode.

The output from this pin is three state and becomes high
impedance during hold acknowledge.

2.17 I0/M (IO/Memory) ... For small-scale systems

(This description applies to uPD70116 only)

The CPU outputs this signal to specify either I/O access or
memory access. A low-level output specifies I/O access and a

high-level signal specifies memory access.
This output is held to high or low level in the standby mode.

The output from this pin is three state and becomes high
impedance during hold acknowledge.

2.18 WR (Write Strobe) ... For small-scale systems

The CPU outputs this strobe signal during data write to an I/O
device or memory. Selection of either I/O or memory is
performed by the I0/M signal.

This output is held to high level in the standby mode.

This pin's output is three state and becomes high impedance
during hold acknowledge.

2.19 HLDAK (Hold Acknowledge) ... For small-scale systems

This pin outputs an acknowledge signal to indicate when the CPU
accepts a hold request signal (HLDRQ). While this signal is
active (high level), the address bus, address/data bus, and the
control lines become high impedance.

2.20 HLDRQ (Hold Request) ... For small-scale systems
This signal is input from external devices to request the CPU

to release the address bus, address/data bus, and the control
bus.

2.21 LBSC (Latched Bus Status 0) ... For small-scale system
{(This description applies to the uPD70108 only)

The CPU uses this signal along with the I0/M and BUFR/W signals
to inform an external device what the current bus cycle is.

I0/M BUFR/W LBSO Bus Cycle
0 0 Program fetch
0 1 Memory read
1 0 Memory write
1 Passive state
0 0 Interrupt acknowledge
1 1 I/0 read
1 0 I/0 write
1 Halt

2.22 UBE (Upper Byte Enable) ... For small- and large scale
systems

(This description applies to uPD70116 only)

This output indicates the using of the upper 8 bits (AD15-ADS8)
of the Address/Data bus during T2-T4 of bus cycle. This signal
is active low and output during T1-T4 of the bus cycle. Bus
cycles in which the UBE is active are shown in the following
table.

Operand UBE ADO No.of Bus Cycle
Word of Even Address| 0 0 1
Word of 0dd Address 0 1x 2 *: First Time
1 o** **: Second Time
Byte of Even Address| 1 0 1
Byte of 0dd Address 0 1 1

The UBE signal goes low level continuously during interrupt
acknowledge state (because of necessity of word access of even
address for vector read).

This signal is held to high level in the standby mode. The UBE
is 3-state cutput and becomes high impedance during hold
acknowledge.

2.23 Al9/PS3 - Al6/PSO (Address Bus/Processor Status) ... For
small- and large-scale systems

These pins are time multiplexed to operate as an address bus
and for output of processor status signals.

When used as the address bus, these pins output the high 4 bits
of the 20-bit memory address. During I/O access, all 4 bits
output data 0.

The processor status signals are output for both memory and I/O
access. PS3 is always 0 in the native mode and always 1 in the
emulation mode. The contents of the interrupt enable flag (IE)
are output to PS2. PS1 and PSO indicate which memory segment
is being accessed.

Al7/PS1 Al6/PSO Segment
0 0 Data segment 1
0 1 Stack segment
1 0 Program segment
1 1 Data segment 0

The output of these pins are three state and becomes high
impedance during hold acknowledge.

2.24 QS1, QSO (Queue Status) ... For large-scale systems

The CPU uses these signals to inform external devices, such as
the floating point arithmentic processor chip, about the status
of the internal CPU instruction queue.

Qs1 Qso0 Instruction queue status
0 0 NOP (Queue does not operate)
0 1 First byte of instruction
1 0 Queue empty
1 1 Subsequent byte

The instruction queue status indicated by these signals is the
status when the execution unit (EXU) accesses the instruction
queue. The data output from these pins are therefore valid
only for one clock cycle immediately following gqueue access.
These status signals are provided so that the floating point
operation chip can monitor the CPU's program execution status
and synchronize its operation with the CPU when control is
passed to it by the FPO (Floating Point Operation) instruction.

These outputs are held to low level in the standby mode.

2.25 BS2-BSO (Bus Status) ... For lage-scale systems

The CPU uses these status signals to inform an external bus
controller what the current bus cycle is. The external bus
controller decodes these signals and generates the control

signals required to perform access of the memory or I/O device.

BS2 BS1 BsO Bus cycle
0 0 Interrupt acknowledge
0 1 I/0 read
1 0 I/0 write
1 Halt
0 0 Program fetch
1 1 Memory read
1 0 Memory write
1 Passive state

These outputs are held to high level in the standby mode.

These are three-state output and become high impedance during
hold acknowledge.

2.26 BUSLOCK (Bus Lock) ... For large-scale systems

The CPU uses this signal to secure the bus during the
instruction immediately following the execution of the BUSLOCK
prefix instruction. It is a request signal to the other
master CPUs in a myltiprocessor system inhibiting them from
using the system bus during this time.

This output is held to high level in the standby mode, however,
it is held to low level if BUSLOCK instruction is executed
right before HALT instruction.

The output of this signal is three state and becomes high
impedance during hold acknowledge.

2.27 RQ/ARK1 , RQ/ARKO0 (Hold Request/ Acknowledge) ... For
large-scale systems

These pins function as bus hold request inputs (RQ) and as bus
hold acknowledge outputs (2K). This is the priority for these
signals.

RQ/AK1 < RQ/AKO
These pins have three-state output buffer. They also are
provided with on-chip pull-up resistors. They are inactive
(high level) when open.
2.28 VDD (Power Supply) ... For small- and large-scale systems
This pin is used for positive power supply.
2.29 GND (Ground) ... For small- and large-scale systems
This pin is used for the ground potential.
2.30 IC (Internally Connected)
This pin is used for tests performed at the factory by NEC.

Normally, the uPD70108/70116 is used with this pin at ground
potential.

Chapter 3 Functions of Internal Block
The uPD70108/70116 consists of two independent processing unit:
a bus control unit (BCU) and an execution unit (EXU).

BCU - Prefetches instruction bytes using instruction gqueue
(4-byte for the upD70108, 6-byte for the uPD70116)

EXU - Internal data processing (Execute microprogram)

3.1 Program Counter (PC)

The program counter is a 16-bit binary counter that stores
offset data for the next programme memory address the EXU is
to execute.

The PC increments each time the microprogram fetches an
instruction from the instruction queue. A new location value
is loaded into the PC each time a branch, call, return, or
break instruction is executed. At this time, the contents of
the PC are the same as the Prefetch Pointer (PFP).

3.2 Prefetch Pointer (PFP)

The prefetch pointer (PFP) is a 16-bit binary counter that
stores the offset data for the program memory address that the
bus control unit (BCU) is about to prefetch in to the
instruction queue.

The PFP is incremented each time the BCU prefetches an
instruction from the program memory. A new location will be
loaded into the PFP whenever a branch, call, return, or break
instruction is executed. At that time the contents of the PFP
will be the same as those of the PC (Program Counter). The
contents of PFP are an offset from the PS Program Segment)
register.

3.3 Q0-Q3/Q0-Q5 (Prefetch Queue)

The uPD70108/70116 has 4-/6-byte instruction queue (FIFO), and
it can store up to 4/6 instruction byte prefetched by the BCU.
The instruction codes stored in the queue are fetched and
executed by the EXU. The queue is cleared and prefetched with
the instruction code of a new location when branch, call,
return, or break instruction has been executed and when
external interrupt has been acknowledged. Normally, the
uPD70108 prefetches if the queue has one byte or more space and
the uPD70116 prefetches if the queue has one word (two bytes)
or more space. If the time required to prefetch the
instruction code from the external memory is less than the mean

3-2

execution time of instructions which are executed sequentially,
thén the actual instructions cycle will be shortend by this
amount of time i.e. the time needed to fetch the instruction
code. This is because the instruction code to be next executed
by the EXU can be available in the queue immediately after the
completion of one instruction. As the result, processing speed
is highly upgraded compared with the conventional CPU which
fetch and execute instructions one by one. Queuing effect is
lowered if there were many instructions which clears queue like
the branch instruction or in the case of continuous
instructions with too short instruction time.

3.4 DP (Data Pointer)

This is a 16-bit register indicates read/write addresses of

variables. Effective address made in the effective address

generator and the register contents including memory address
offsets are transferred to the DP.

3.5 TEMP (Temporary Communication Register)

This is a 16-bit temporary register used by communications
between external data bus and the EXU. The TEMP can be read or
written by upper byte or lower byte independently for byte
access. Basically, the EXU completes write operation with
transferring data to the TEMP and completes read operation with
recognizing the data has been transferred to the TEMP from
external data bus.

3.6 Segment Registers (PS,SS,DS0, and DS1)

The memory addresses accessed by the uPD70108/70116 are divided
into 64K-byte logical segments. The starting (base) address of
each segment is specified by a segment register, and the offset
from this starting address is specified by the contents of
another register or by the effective address.

These are the four types of segment registers used.

Segment register Default offset

PS (Program Segment) PFP
SS (Stack Segment) SP, effective address
DSO0 (Data Segment 0) IX, effective address
DS1 {(Data Segment 1) Iy

3.7 ADM (Address Modifier)

The Address Modifier performs the generation of physical
address (adding segment register and PFP or DP) and increment
of PFP (Prefetch Pointer).

3.8 General-Purpose Registers (AW, BW, CW, and DW)

There are four 16-bit general-purpose registers. These can be
accessed as 16-bit registers or as 8-bit registers by dividing
them into their high and low 8-bits (AH, AL, BH, BL, CH, CL,

DH, DL).

Each register is also used as a default register for processing
specific instructions. These are the default assignments.

AW: Word multiplication/division, word I/0, data conversion

AL: Byte multiplication/division, byte I/0, BCD rotation, data
conversion, translation

AH: Byte multiplication/division,
BW: Translation

CW: Loop control branch, repeat prefix

CL: Shift instructions, rotation instructions, BCD operations
DW: Word multiplication/division, indirect addressing I/O
3.9 Pointers (SP, BP) and Index Registers (IX, IY)

These registers serve as base pointers or index registers when
accessing the memory using based addressing, indexed
addressing, or based indexed addressing.

These registers can also be used for data transfer and
arithmetic and logical operations in the same manner as the
general-purpose registers. They cannot be used this way,
however, as 8-bit registers.

Also, each of these registers acts as default registers for
spacific operations. The derault assignments are:

SP: Stack operations

IX: Block transfer (source), BCD string operations

IY: Block transfer (destination), BCD string operations
3.10 TA/TB (Temporary Register/Shifter A,B)

The TA/TB are l6-bit temporary register/shifter used with
execution of multiply/divide and shift/rotate (including BCD
rotate) instructions. When executing multiply or divide
instruction TA+TB operates as a 32-bit temporary
register/shifter, and TB operates as a l6-bit temporary
register/shifter when executing shift/rotate instructions.
Both the TA and TB can be read or written to and from the
internal bus by upper byte or lower byte independently. The
contents of the TA .and TB are input to the ALU.

3.11 TC (Temporary Register C)

The TC is a 16-bit temporary register used with internal
processing like the multiply or divide operation, etc. The TC
content is output to the ALU.

3.12 ALU (Arithmetic & Logic Unit)

The Arithmetic and Logic Unit is consists of a full adder and
logical operation circuit and performs these operations:

- Arithmetic operation (Add, Subtract, Multiply,
Divide, increment, decrement, and complement)

. Logical operation (test, And, Or, Xor and bit test,
set, clear, and complement)

3.13 Program Status Word (PSW)

The program status word consists of the following six status

and four control flags.
Status flags
V (Overflow)
S (Sign)
Z (Zero)
AC (Auxiliary Carry)
P (Parity)

CY (Carry)

Control Flags

MD (Mode)

DIR (Direction)

IE (Interrupt Enable)

BRK (Break)

When the PSW is pushed onto the stack, the word image of the
various flags is as shown here.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 1 1 1 v I B S Z 0 A 0 P 1 C
D I E R C P PSW
K

The status flags are set and reset depending on the result
(data value) of each type of instruction executed.

Instructions are provided to set, reset, and not (or
complement) the CY flag directly.

Other instructions set and reset the control flags and control
the operation of the CPU.

3.14 LC (Loop Counter)

The Loop Counter (LC) is a 16-bit register which counts these
items.

. Loop number of the primitive block transfer and
input/output instructions (MOVBK, OUTM, etc.)
controlled with repeat prefix
instructions (REP, REPC, etc.).

. Shift number of the multi-bit shift/rotate instructions.

3-7

3.15 EAG (Effective Address Generator)

The Effective Address Generator (EAG) performs high-speed
effective address calculation necessary for memory access.

This completes all the calculations with 2 clocks for every
addressing mode.

This fetches the instruction byte (2nd or 3rd byte) which has
operand specifying field, if the instruction needs memory
access. Then calculates effective address and transfers it to
the DP (Data Pointer) and generates control signals relating to
handling ALU and corresponding registers:—1In addition, if it's
necessary, the EAG requests to the BCU for starting the bus
cycle (memory read).

3.16 Instruction Decoder

The Instruction Decoder classifies lst byte of an instruction
code into some groups with specific function and holds them
during macro-instruction execution.

3.17 Microaddress Register

The microaddress register specifies address of an
microinstruction ROM to be next executed. At starting of an
microinstruction execution, the lst byte of an instruction
byte(s) stored in the queue is fetched in this register and it
specifies a start address of the corresponding microinstruction
sequence.

3.18 Microinstruction ROM

The Microinstruction ROM has 1024 words by 29 bits of
microinstructions.

3.19 Microinstruction Sequencer
The Microinstruction Sequencer controls the microaddress
register operation, microinstruction ROM output, and

synchronizing the EXU with BCU.

3-8

Chapter 4 configuration of Memory and Input/Output

4.1 Memory Configuration and Accessing
The uPD70108/70116 can access and address up to 1M bytes
(512K words) of memory area. The memory area is addressed
by the address information output by the 20-bit address
bus (Al9 to AO).
The memory map is shown in Fig. 4-1.
The 1K bytes from addresses 0H to 3FFH are allocated as an
interrupt vector table. This area may be used for other
purposes in some systems. The 12 bytes from address
FFFFOH to FFFFBH are automatically used by the CPU when
it is started or reset and therefore cannot be used for
any other purpose. The four bytes from addresses FFFFCH
to FFFFFH are reserved for future use and consequently
not available to the user.

0H
Interrru,pt, Yector table See Fig. 6-1 for details.
3FFH
400H
user's area
> %
FFFEFH
FFFFOH
Exclusive
FFFFBH
FFFFCH
Reserved
FFFFFH
€— -3
Byte

Fig. 4-1 Memory Map

The memory stores such things as instruction codes,
interrupt start addresses, stack data, and general
variables. Some of these are stored in byte units and the
others are in word units.

These data can be stored in both even (A0=0) and odd
(A0=1) addresses generated by an instruction. The area
where interrupt start addresses (interrupt vector table)
are stored is addressed only by using even addresses,
however. The uPD70116 is so designed that a word data

can be accessed regardless of whether the word data is of
an even or an odd address, allowing both the even and odd
addresses to be generated by an instruction.

Table 4-1 shows the address and data configuration of

each data.

Table 4-1
Data Address Data configuration
Instruction code Even/odd |1/2/3/4/5/6 bytes
Interrupt vector table | Even 2 words/vector
Stack Even/odd | Word
General variable Even/odd |Byte/word/double word

The configuration of the word data and double-word data

are as follows:

Word data Double-word data
configuration configuration
Lower address Lower byte Lower Lower byte }Lower
Higher address Higher byte| address Higher byte| Jword
Low byte
Higher High byte Higher
address word

The interface between the memory and the CPU uPD70108

is shown in Fig. 4-2. The interface between the memory

and the CPU uPD70116 is shown in Fig. 4-3,

A19-4A0) Address bus (2 0 bits))
Memory
(1M bytes)
D7-Do0§ Data bus (8 bits)

Fig. 4-2 Interface Between Memory and uPD70108

Because the data bus of the uPD70108 is 8 bits wide, a
byte data is accessed during one bus cycle and two bus
cycles are required to access word data regardless of
whether the word data is of an even or odd address.

A19-A1) Address bus (1 9 bits) A
A0 19 L 1
UBE ‘—J
<\/
BSEL BSEL
Memory Memory
High - order Low - order
Bank Bank
(512K bytes) (512K bytes)
D15-D8 D7-D0
D15-Do0) Data bus (1 6 bits) {

Fig. 4-3 Interface Between Memory and uPD7011l6

4-3

Because the data bus of the uPD70116 is 16 bits wide, in
principle the uPD70116 has the capability to transfer

a 16-bit word data within one bus cycle. This is true,
however, only when an even-address word data (i.e., when
A0=0) generated by an instruction is accessed., Two bus
cycles are required to transfer odd-address word data
(i.e., when A0=1).

The A0 signal in Fig. 4-3 is active low, enabling the
byte data in the low bank of the memory. In addition to
the address information output from the address bus, a
UBE (Upper Byte Enable) signal that is also active low is
output. The UBE signal enables the byte data in the higher
bank of the memory.

When accessing word data of odd addresses, the UBE signal
bécomes 0 and the A0 signal becomes 1 during the first.
bus cycle. Only the higher byte of an address is accessed
at this time. Subsequently, the UBE signal automatically
becomes 1 and the lower 16 bits of the address information
(Al15-A0) is incremented by one, in other words, the A0
signal becomes 0. Then the lower byte of the address is
accessed.

The word data of an even address is accessed during one
bus cycle when the UBE and A0 signals are Os.

Table 4-2 summarizes the above description.

Table 4-2 yPD70116 Data Access

Accessed data UBE A0 No. of bus cvles
Word (even address) o] Q 1
Word (odd address) 0 1 2
1 0
Byte (even address) 1 0 1
Byte (odd address) 0 1 1

The uPD70116 normally accesses (prefetches) instruction
codes in word units. If a branch operation to an odd
address takes place, however, only one byte is fetched
from that odd address. After that, instruction codes are
prefetched in word units again.

When the interrupt vector table is accessed in response
to an interrupt, even addresses are always generated from
vector numbers (0 to 255) as the addresses of the vector
table. Data of even addresses are always accessed as word
data when the interrupt vector table is accessed.
Consequently, when the vector table is accessed in
response to an interrupt, two bus cycles are required
because two words (segment base and offset) are accessed.
One bus cycle to access the memory requires four clocks.
As a result, each time word data from an odd address

is accessed, four additional clocks of instruction exe-
cution time are necessary compared to that required when
accessing an even-address word data. This only applies to
instructions that require more than one bus cycle.

When tranferring a word data from one memory area to
another, the memory must be accessed twice because the
word data must be read from the source first and then
written to the destination. If both the source and the
destination are odd addresses the execution time will be
maximized.

The same holds true during a stack operation. The con-
tents of a register are automatically saved to the stack
when an interrupt is serviced., These contents are all
word data. If they are processed by using an odd address,
therefore, the number of bus cycles required is twice as
many as the bus cycles required to process using an even
address.

The result is a delay in the interrupt response time.
Consideration should be given to this point.

As is apparent from this discussion, it's a good idea to
allocate even addresses to word data that can be checked
by the program when accessed in the uPD70116.

Example: Execution time of MOV reg,mem instruction (number
of clocks for word data accessed one time)
Byte data 11: uPD70108/70116
Word data 15: uPD70108/0dd address of 70116
11: even address of uPD70116

4.2 I/0 Configuration and Accessing
The uPD70108/70116 can access up to 64K bytes (32K words)
of I/0 address area used independently of the memory.
The I/0 address area is addressed by address information
output by the lower 16/8 bits of the address bus.
The I/0 map is shown in Fig. 4-4.

OH

FFFFH

Byte
Fig. 4-4 1/0 Map

Unlike the memory, the segment method is not applied to
the I/0 address area.

When I/O addresses are output, 0s are output to the higher
four bits (Al9 to Al6) of the address bus.

Since data are transferred between the CPU and the I/0
address area in byte or word units, both 8-bit and

16-bit I/0 devices can be connected to the uPD70116

and only 8-bit I/O devices can be connected to the
uPD70108.

However, in the uPD70116, a word data of an even

address, in the same way as when accessing the memory,
requires only one bus cycle and two cycles are required
to access odd-address word data.

When the pPD70116 accesses an 8-bit I/0 device, bit A0 of
the I1/0 address information is only used to select an I/0
device. The Al and higher bits are used to select a
device and several registers in that device.
Consequently, only even addresses should be assigned to
an I1/0 device as well as to the internal registers of the
I1/0 devices so that the registers can be selected using
only even addresses. Similarly, I/0 devices whose inter-
nal registers are assigned with odd addresses must be
assigned with an odd address. If memory-mapped I/O con-
figuration (allocating a certain area of the memory to an
I/0 address area) is employed, the I/O address area can
be allocated to a IM-byte memory area. In this way,
numerous addressing modes of the memory and operation
processes can be directly performed on I/O devices.

For example, if a bit operation'instruction for the
memory is used, one line of a specific I/0O port can be
tested (to examine 1 or 0), set (to 1), cleared (to 0),
or inverted.

In a memory-mapped I/O configuration, however, control
signals output from the CPU are regarded as those for the
memory. The I/O device is therefore distinguished from
the memory only by address information. For this

reason, then, be careful that addresses of variables or
the stack do not conflict with the addresses allocated to
1/0.

Chapter 5 Read/Write Timing of Memory and Input/Output

Read/write timings of the uPD70108/70116 memory and

/0 are shown in Figs. 5-1 to 5-8. One bus cycle is
redquired for each access (read/write) of the memory or I/O
address area. A bus cycle is basically made up of four
states (clocks): Tl to T4. One state is 200ns when the
microprocessor operates at S5MHz.

The uPD70108 and uPD70116 fetch an instruction code and
read data using exactly the same timing (see Figs. 5-1,

5-3, 5-5, and 5-7). If a particular instruction calls for a
longer internal process time, the EXU fetches the instruction
code of that instruction from the instruction gqueue and exe-
cutes it., After that, the BCU continues prefetching instruc-
tions to the instruction queue until the queue becomes full.
Should the EXU not fetch an instruction code from the
instruction gueue because another instruction is being exe-
cuted, the BCU will not prefetch the next instruction.
Instead, it automatically inserts an idle state (TI) after
state T3. More idle states are inserted until the EXU
finishes executing the instruction being processed. Then it
fetches the next instruction code from the instruction
queue,

When the next instruction code is fetched, the BCU advances
the state of the bus cycle from state T4 to Tl. For a memory
or I/0 device whose access time is slow, the BCU detects a
READY signal sent from the memory or the I/0 device. If the
READY signal is at low level, BCU will not advance the bus
cycle state from T3 to T4. Instead, it will delay by
inserting a wait state (TW). When the READY signal becomes
high, execution advances the bus cycle state from T4 to

Tl so the next instruction can be fetched,

When the wait state TW is inserted, the current level of
each signal is retained and the read/write timing is

expanded.

1 bus cycle

T4 T1 T2 T3 T4
ck [L[LT L1 L L
A19/PS3-A16/PS0 X _ADDR. X PROG: STATUS
A15-A8 X__ADDRESS
read
AD7-ADO DATA
ASTB T\ /
BUFEN / \ /
BUFR/W \ /
®D \ VA
oM X
LBSO

Fig. 5-1 Read Timing of uPD70108 Memory and 1/0

(for small-scale systems)
1 bus cycle

T4 T1 T2 T3 T4
cee [L[L[L L1 L
A19/PS3-A16/PS0 X ADDR. X PROG. STATUS
A15-A8 X ADDRESS
AD7-AD0 — ADDR. X write DATA)
ASTB [T\ /
BUFEN ___/ \ YA
BUFR/W ___/ __
WR \ /
1o/M° X X
LBSO. X X

Fig. 5-2 Write Timing of wPD70108 Memory and I/0
(for small-scale systems)

5-2

1l bus cycle

T4 T1 T2 T3 T4
cek [L[LT LT LI L
A19/PS3-A16/PS0 X ADDR. X PROG. STATUS
UBE X
read

AD15-ADO (ADDR.) DATA
ASTB / \ /
BUFEN __/ ______ /S

BUFR/W _\ /
%D \ /
oM~ X X

Fig. 5-3 Read Timing for uPD70116 Memory and I/O
(for small-scale systems)

1l bus cycle
T4 T1 T2 T3 T4
ctk o L LT LT L
A19/PS3-A16/PS0 X _ADDR. X PROG. STATUS
UBE X

AD15-AD0 ——— ADDR, ¥ "write DATA —_
ASTB / \ /
BUFEN __/ N\ Yo
BUFRW__/ -
WR \ VAR

oM YX Y

Fig. 5-4 Write Timing for uPD70116 Memory and I/O
(for small-scale systems)

5-3

1 bus cycle

T4 T1 T2 T3 T4
CLK [| 1 1] .
A19/PS3-A16/PS0 X ADDR. X PROG. STATUS
Al15-A8 X __ADDRESS
read
AD7-ADO ADDR. DATA
ASTB I\ /
BS2-BSO \ /
RD \ /

Fig. 5-5 Read Timing for uPD70108 Memory and I1/0

(for large-scale systems)

1 bus cycle

T4 T1 T2 T3 T4

cek [[L LT L L

A19/PS3-A16/PS0O X ADDR. X PROG. STATUS

A15-A8 Y ADDRESS
AD7-AD0 —— ADDR. X _ write DATA —
ASTB / \

BS2-BS0 \ /

Fig. 5-6 Write Timing for puPD70108 Memcry and I/O
(for large-scale systems)
5-4

1l bus cycle

T4 T1 T2 T3 T4
2 I N N S O N R
A19/PS3-A16/PSO X_ADDR, X PROG. STATUS
UBE X
read
AD15-ADO ADDR. DATA
ASTB /T \
BS2-BS0 \ /
ED \ /
Fig. 5-7 Read Timing for uPD70116 Memory and I1/0
(for large-scale systems)
1l bus cycle
T4 T1 T2 T3 T4
S22 R s R S N S R B
A19/PS38-A16/PS0O X ADDR, X PROG. STATUS
BE X
AD15-AD0 — ADDR, X write DATA S—
ASTB / \
BS2-BS0 \ /

Fig. 5-8 Read Timing for yPD70116 Memory and /0

(for large-scale systems)

5-5

Chapter 6 Interrupts

These interrupts accepted by the uPD70108/70116 are roughly
classified into two types. One type is caused by an external
interrupt request and the other is caused by a software pro-
cess. Both types are vectored interrupts.

When an interrupt occurs, therefore, a location in the
interrupt vector table that has been prepared beforehand is
selected either automatically (a fixed vector) or by
specification (a variable vector). This selected location
determines the start address of the corresponding interrupt
routine.

Table 6-1 shows the vector, priority, and number of clocks
required to process each interrupt.

Table 6-1 Interrupt Source

No. of

Interrupt source clocks Vector | Priority

NMI (rising-edge 58/38 2 2
External | active)

vy (PE9RTLE¥SYe) 68/49 32-255 3

DIVU divide error 65/45

DIV divide error 65=-75/45-55

CHKIND boundary 81-84/53-56

over 1
Soft- BRKV 60/40
ware BRK3

BRK imm8 58/38

BRKEM imm8 32-255

CALLN imm8

BRK flag 1 4

(single step)

NOTE: The number of clocks to the left of the slash (/)
is for the uPD70108 and the number on the right is
for the uPD70116.

The interrupt vector table is shown in Fig. 6-1, This
table is allocated to a lK-byte memory area (from
addresses 000H to 3FFH) and can hold up to 256 vectors

(four bytes are required per. vector).

—

000H
— Vector 0 —1 Dvide error
004H ’
— 1 — Breakflag
008H
— 2 =1 NMl input H
. 3
00CH g
- 3 — BRK 3instruction w
:
010H '
— 4 = BRKYV instruction
L
014H ‘
- [— CHKIND instructior |
/
018H '
- 6 -
= == » Reserved
07CH ’
- 31 -
~
080H)
- 32 -
+ General
L L + BRK imm 8 instruction
r - BRKEM instruction
3FCH + « INT input (external)
~ 255 — |« CALLN instruction
J

Fig. 6-1 Interrupt Vector Table
The interrupt sources that can use vectors 0 to 5 are
specified and vectors 6 to 31 are reserved. These
vectors, therefore, are not for general use.
Vectors 32 to 255 are for general use. These vectors are
used for four interrupt sources: a 2-byte break, BRKEM,
CALLN instructions (during emulation), and INT input.

6-2

Four bytes are used for each interrupt vector. The two
bytes of the lower address and the two bytes of the higher
addreés are loaded to the programmable counter (PC) as an
offset and a base, respectively.

Example: vector O

000H , 00 1H |

002H 003H 1

PS —(003H, 002H)
PC —(001H, 000H)

Based on this format, the contents of each vector are
initialized at the beginning of a program.

The basic steps to be followed when the program execution
jumps to an interrupt routine are as follows:

(sp-1, SP-2) « PSW

(SP-3, SP-4) « PS

(sp-5, SP-6) « PC

SP « SP-6

IE « 0, BRK « 0, MD « 1

PS « higher vector

PC « lower vector

Because the interrupt enable (IE) and break (BRK) flags
are reset when an interrupt routine is started, maskable
interrupts (INT) and single-step interrupts are disabled.

6.1 INT Interrupts

If an INT input signal is detected at high level at the
end of executing one instruction while interrupt is
enabled (IE=1), the INT interrupt request will be ac-

knowledged unless the NMI and hold request signals are
active at the same time. The program execution then
enters an interrupt acknowledge cycle (see Figs. 6-2
and 6-3).

The interrupt acknowledge cycle consists of two bus
cycles. The INTAK, ASTB, and BUFEN signals are output
during the first cycle. Although the bus cycle is
started, initially no data read/write operation is per-
formed and the address/data bus becomes high impedance.
At this time the hold request signal is not accepted. If
the uPD70108/70116 is in the maximum mode, the BUSLOCK
signal is output, inhibiting other devices from using the
bus.
The first interrupt acknowledge cycle is necessary to
synchronize with the external interrupt controller.
When the INTAK, ASTB, and BUFEN signals are output
during the second interrupt acknowledge cycle, the
external interrupt controller sends an interrupt vector
to the data bus (AD7 to ADO).
After the second interrupt acknowledge cycle has been
completed, the location in the interrupt vector table
corresponding to the vector obtained during that
acknowledge cycle is accessed. (At the same time, the
contents of the PSW, PS, and PC are saved.) The interrupt
start address is then output according to the contents of
the interrupt vector table and the interrupt process
routine is started.
The following provides interrupt acknowledge operations
performed by the uPD70108 and uPD70116.
° uPD70108 interrupt acknowledge operation

1. Acknowledge cycle (first)

2. Acknowledge éycle (second)

3. Read lower byte of offset word

4. Read higher byte of offset word
5. Read lower byte of segment word
6. Read higher byte of segment word

7 . Save lower byte of PSW
8. save higher byte of PSW
9. Save lower byte of PS
10. save higher ‘byte of PS

11.
12.
13.

Save
Save
Output

lower byte of PC
higher byte of PC
interrupt start address.

° ,PD70116 interrupt acknowledge cycle

1. Acknowledge cycle (first)

2.
3.
4.
5.
6.
7.
8.

Acknowledge cycle (second)

Read
Read
Save
Save
Save
output

of fset word
segment word
PSW
PS
PC
interrupt start address

ssaappe
9Tqe3 I03n9A Jo 93hq I9pIO-Yb 1H

O

PIOM I9pIo ssaappe
~MOT 128JJ0 JO aTqe3 I10309A Jo
2314q Iepro moT 9kq I9pIo Mo

8V-g1V

od&3 xojoep

VN

3 :W:H unwuso

L

0oaqv-.Lrayv
Fndut
\|IE\0~

—/ "\

\’I/’.\!/} MVINT

_ _ _ma_Na._Ts_v.—._u,r_u,ﬁ_mp__u&_f-._m.—._w.—.-?H ve_mb_wh_~h_vh

H\ A/ qLSV

10

Fig. 6-2 Interrupt Acknowledge Timing (uPD70108)

pIoMm ssaappe
I9pIO-MOT s1qea

395330 I0300A adXy xojoep

llAHm”v!lA > mmﬁo-s"m{ — 0av-91Qv
jnaurl ndino nauy

(ATuo spow umurtxey)

/ \ 30071s04

N\

/'-E\E
/ \ / \ NdJ4nd

\/

\/ \/ qLsv

.]
_. _2_2_;_:_Z_;_:_Z_:_Z_S_Z_Z._:_:._:_E_2._:;:_

6-3 Interrupt Acknowledge Timing (uPD70116)

Fig.

During the first interrupt acknowledge cycle, no idle
state (TI) is inserted in the bus cycle of the uPD70108.
In the uPD70116, however, three TI's are inserted.

During the second interrupt acknowledge cycle, five TI's
are inserted in the bus cycles of both microprocessors.
The CPU's of both the uPD70108 and uPD70116 read an 8-bit
vector during the second interrupt acknowledge cycle. The
number of cycles required to save the contents of the
PSW, PS, and PC are different for the two
microprocessors.

This is because the width of the uPD70108 data bus is
smaller than that of the yPD70116. That is, two bus
cycles are required for the puPD70108 to perform each of
the necessary operations such as reading an offset word
and a segment word, and saving the PSW, PS, and PC. In
contrast, the uPD70116 performs each of these operations
within one bus cycle.

The UBE signal of the uPD70116 remains at low level
during the first and second interrupt acknowledge cycles

and during the subsequent access of the offset and

_____ guent acc

6.2 BRK Flag (Single-Step) Interrupt
The uPD70108/70116 is provided with a single-step interrupt
function that is useful for program dubugging and other
operations. This interrupt is controlled by the break
(BRK) flag; bit 8 of the PSW. However, no instruction
that directly sets or resets the BRK flag is available
and the contents of the PSW must be saved to the stack to
control the BRK flag. By restoring the contents to the
PSW, the BRK flag is indirectly set or reset. When the
BRK flag is set, an interrupt routine (monitor program,
etc.) specified by vector 1 is started after the
following instruction has been executed. The BRK flag is
reset at this point together with the interrupt enable
(IE) flag.

While the interrupt routine is being executed, the number

of single-steps is checked. If it is judged that the

single-step operatiqn may be terminated, a memory opera-

tion instruction resets the BRK flag that is now saved in

the stack. The CPU operation then returns to the main

routine after which the next sequence of instructions is

successively carried out.

If the execution returns to the main routine without
operation of the BRK flag, the BRK (=1) flag saved to the
stack will be restored to the PSW. One instruction of the

main routine is then executed and vector 1 interrupt is

caused again.

6.3 Timing That Does Not Accept Interrupts

While an instruction that directly sets

data in the segment register is being executed or while

the program execution is between three types of prefix

instructions and the next single instruction or

between the EI instruction and.the next instruction,

neither NMI, INT interrupts, nor single-step break is

acknowledged as shown below.

o

o

Between one of these instructions and the next
instruction-- MOV sreg, reglé; Mov sreg,meml6;
MCV regl6é, sreg; MOV memlé,sreg; POP sreg

Between one of these instructions and the next
instruction--

segment override prefix (PS:, SS:, DSO:, DS:)
Between one of these instructions and the next
instruction--

repeat prefix (REPC, REPNC, REP, REPE, REPZ, REPNE,
REPNZ)

Between this instruction and the next instruction--
bus lock prefix (BUSLOCK)

Between the EI instruction and the next instruction

An NMI request signal generated during the abovementioned

interrupt disable timing will be internally retained and

acknowledged on completion of the subsequent single instruction.

6.4 Interrupt process During Block Transfer Instruction
Execution
should an external interrupt (NMI or INT when the interrupt
is enabled) occur while a primitive block
transfer/comparison, or I/0 instruction is being executed,
the CPU will acknowledge the interrupt and branches the
execution to the corresponding interrupt address. At the
beginning of the interrupt routine started in this manner,
the contents of CW register that has been serving as a
counter for block data will be saved to the stack. After
the contents of the CW have been restored at the end of the
interrupt process routine, the execution of the CPU will be
returned to the original routine. In this way, the

interrupted block operation will be resumed.

If prefix instructions have existed before the block
operation instruction, up to three instructions will be retained.

On returning from the interrupt routine, the execution must
return to the address at which the prefix instruction is
held. For this purpose, the uPD70108/70116 is so designed
that the return address when it is saved (minus one address
per prefix instruction) is modified.

To make the best use of these functions, more than three
prefix instructions must not be placed before a block
operation instruction.

[Example of correct procedure]
BUSLOCK

REPC
NMI — CMPBKB dst-block, SS: src-block

In this example, the BUSLOCK, REPC, and SS: instructions
are executed when the program execution has been returned

from the NMI interrupt process.

6-10

[Example of incorrect procedure]

BUSLOCX
REP
REPC
NMI » CMPBK dst-block, SS: src-block

In this example, it is judged that two types of prefix
instructions exist (repeat prefix instruction is the same
type) and two return addresses are accordingly
modified. In reality, however, the prefix instruction
occupies 3 addresses, Consequently, the program execution
cannot return from the interrupt routine to the BUSLOCK
instruction and, instead, will return to the REP
instruction.

Chapter 7 Standby Function

The pPD70108/70116 is provided with standby mode. In standby
mode, program execution can be terminated or resumed as
required retaining all the statuses in the CPU. Moreover,

by making the most of the CMOS characteristics of the
microprocessor, the clock is not supplied except to the
circuits related to the hold and standby release functions.
As a result, the power consumption can be reduced to
approximately 1/10 of that required for normal operation in

native or emulation mode.

7.1 Setting Standby Mode
The standby mode can be set by executing the HALT
instruction in native mode. When the microprocessor
is in emulation mode, execute the HLT instruction to
set the standby (hold) mode.

7.2 Standby Mode
In standby mode, the clock is not supplied to any
circuit except those required to release the standby
mode and those related to the hold function. Even if the
supply of the clock is stopped, however, all CPU statuses
immediately before the standby mode are retained.
By stopping the supply of the clock to most of the cir-
cuits, power consumption drops to approximately 1/10th
that normally required to execute programs.
Although the bus hold function can be used in standby
mode, the CPU reenters the standby mode when the hold
acknowledge cycle is completed.
The status of each output signal in standby mode is as
follows:

Table 7-1 Signal Status in the Standby Mode

Qutput signal Status
Large- | 0S1,0 Fixed at low level
scale BS2-BS0 Fixed at high level
system | BUSLOCK Fixed at high level (however
mode fixed at low level if BUSLOCK
instruction exists before
HALT instruction.)
Small- | INTAK
scale BUFEN Fixed at high level
system | WR
mode RD
ASTB Fixed at low level
BUFR/W
I0/M (uPD70108) Fixed at either high or low
I0/M (uPD70116) level
LBSO_(uPD70108)
Common | GBE (uPD70116) Fixed at high level

Al19/PS3-Al6/PS0O
Al5-A8 (uPD70108)
AD7-ADO (uPD70108)

AD15-ADO (uPD70116)

Fixed
level

at either high or low

As can be seen from this table, the control outputs pro-

vided with an active level are fixed at inactive level in

standby mode. The other output signals are fixed at

either high or low level.

The standby mode is released by input of the RESET signal
or an external interrupt (NMI or INT).

7.3 Releasing Standby Mode by External Interrupt Input
The standby mode is released when an input NMI or INT
signal becomes active., If the standby mode has been
released by the INT signal, the operation the CPU per-
forms is determined depending on whether the interrupt
has been enabled (EI) or disabled (DI) when the INT
signal is recognized.

7.3.1 Releasing Standby Mode by NMI Input
Regardless of whether the CPU enters the standby mode
from the native mode or the emulation mode, the standby
mode is unconditionally released and the NMI interrupt
routine of the native mode is started. If the RETI
instruction is executed at the end of the NMI servicing
routine, the CPU can reenter the mode set before the CPU
entered the standby mode. The program execution is then
resumed starting from the instruction next to the
HALT/HLT instruction.

7.3.2 Releasing Standby Mode by INT input
(1) when interrupt is disabled (DI)
When the standby mode has been released, the CPU
enters the mode that had been set before the standby
mode was set, That is, if the standby mode was set
while the CPU was in native mode, the CPU returns to
the native mode upon releasing the standby mode. If
the standby mode was set when the CPU was in
emulation mode, the emulation mode is resumed. The
program execution will be resumed starting from the
instruction next to the HALT or HLT instruction.
NOTE: When releasing the standby mode by an input INT
signal while the interrupt is disabled, the INT
signal must be kept at high level until the
instruction next to the HALT/HLT instruction is
executed. In other words, the INT signal must
remain high level for a lapse of 15 clocks. This
applies on the assumption that the instruction

queue has become empty after executing the HALT/HLT
instruction, however. If wait states are inserted,
the number of inserted wait states must be
accordingly added to the 15 clocks.
(2) When interrupt is enabled (EI)
The standby mode is released and the INT interrupt
routine in the native mode is started regardless of
whether the CPU was in native or emulation mode
before the standby mode was set. If the RETI
instruction is executed at the end of the INT
interrupt routine, the CPU can return to the mode
that had been set before the standby mode. The
program execution will be resumed starting from the
instruction next to the HALT/HLT instruction.

7.4 Releasing Standby Mode by RESET Input
The standby mode is unconditionally released when the
RESET input signal becomes active regardless of whether
the standby mode was set while the CPU was in native
or emulation mode. On releasing the standby mode, a nor-
mal CPU reset operation is performed in native ﬁode.
The statuses of the CPU that have been retained during
the standby mode will be consequently reset. The program
execution once stopped by the standby mode therefore
cannot be resumed.

Chapter 8 Reset Operation

The uPD70108/70116 is reset at the rising edge of the
RESET signal and initialized as follows:

(1)

(2)
(3)

(4)
(5)

(6)

The PFP (Prefetch Pointer) and PC (Program Counter) are
cleared to 000OH.

The PS (Program Segment) register is set to FFFFH.

The SS (Stack Segment), DSO (Data Segment 0), and DSl

(Data Segment 1) registers are cleared to 0000H.

The instruction queue is cleared.

Only the MD (Mode) flag of the PSW is set and

the other flags are reset.

MD=1 : 'Specifies the native mode.

DIR=0 : Specifies the direction address
modification (during block transfer).

IE=0 : Disables the INT interrupt.

BRK=0 : Disables the single-step interrupt.

Registers other than the above will be undefined.

When the level of the RESET signal is lowered after the
signal has i
clocks or more, the CPU starts prefetching instructions
starting from address FFFFOH.

Chapter 9 Logical and Physical Addresses

The uPD70108/70116 is provided with a 20-bit address bus
(the lower 8/16 bits are also used as a data bus) and can
access up to 1M bytes of memory area.

However, it is almost impossible for a programmer to write
programs using 1M bytes of addresses that directly
correspond to hardware (these addresses are referred to

as "physical addresses").

To solve this problem, the uPD70108/70116 employs a memory
segment method that allows the programmer to treat the 1M-byte
memory area as an aggregate of logical address areas. These
logical address areas are considered to be small units not
directly dependent on physical addresses.

Four types of segments are used: program, stack, data 0, and
data 1 segments. The addresses of each segment are
determined according to the offset value of the first
address of the logical segment that is specified by one of
the four 16-bit segment registers (PS, SS, DSO, and DS1)
each of which corresponds to each of the four logical

segments.

Segment register Default offset

PS PFP

SS SP, effective address
DSO IX, effective address
DS1 IY

The function of each segment is described next.
(1) Program segment
The first address of the program segment is determined by
the program segment (PS) register. The offset from the
first address is specified by the prefetch pointer (PFP).
This segment is assigned with instruction codes and table
data, among others. The data in this segment can be
accessed as general variables or source block data by
using the segment override prefix (PS:) instruction.

(2) Stack segment

The first address of the stack segment is determined by
the stack segment register. The offset from the first
address is specifieé by the stack pointer (SP).

.This segment is used as an area that saves the contents
of the PC (return address), the PSW, and the
general-purpose registers.

The data in this segment can be accessed as general
variables or source block data by using the segment
override prefix (SS:) instruction.

When addressing general variables, the SS register is
automatically used as a segment register if the BP
register is specified as the base register. The offset is
specified by an effective address and therefore the data
in the stack segment can be accessed as if they were
general variables.

(3) Data segment 0

The first address of the data segment 0 is determined by
the data segment 0 (DS0) register and the offset from the
first address is specified by an effective address.

This segment is used to store general variables.

When executing a block transfer or BCD string operation
instruction, this segment is used to store the source
block data. On this occasion, however, the offset is
determined according to the contents of the IX register.
When the BP is specified as base register, default
segment register is to be SS. 1In this case, programmer
can override with segment override prefix (DSO:) and

the data in the Data Segment 0 can be addressed with

DSQ + BP.

(4) Data segment 1

The first address of this segment is determined by the
data segment 1 register (DS1l) and the offset from the
first address is specified by the IY register.

This segment is used to store the destination block data
when executing a block transfer or BCD string operation
instruction.

The data in this segment can be accessed as general
variables (the offset is determined by an effective
address) or source block data (the offset is determined
according to the contents of the IX register) by using
the segment override prefix (DSl:) instruction.

With the segment method, the programmer can write
programs paying attention to only the contents of the
segment registers and the offset value of the contents.
The contents of the segment registers may be a default
or specified as an override. If the contents éf a
segment register constitute address 0, the offsets of
the addresses in the segment specified by that segment
register can be treated as logical addresses.

A program written as an aggregate of segments specified
by logical addresses is compiled, assembled and treated
as plural object modules. Each object module has its own
segment name, size, partition, and control information.
These object modules are processed by the linker and
segment bases corresponding to physical addresses are
specified. The object modules are then ready to be
actually loaded to the memory.

The following figure shows the relation between a
segment register, offset, and physical address.

19 4 3 0
16-bit segment register I 0]

135 +

[16-bit offset

g

20-bit physical address

el ©

L9

o

To obtain a physical address, the contents of a segment
register are multiplied by 16 and an offset value is
added. The result is used as a physical address. Note
that the contents of the segment register and the offset
value are treated as unsigned data.

Unless a specific program is executing an instruction
that modifies the segment base (unless a branch instruc-
tion or a variable reference is in the segment), the
addresses in the program can be determined by the offset
obtained from the contents of a segment register.

The program can be loaded to any memory area only by
matching the contents of the segment register with the
first physical address of the memory area to which the
program is to be loaded.

By using this feature of the segment method, a program
stored in an external file such as a floppy disk can be
loaded to available buffer memory and run when the
program is called by the program currently being executed
by the CPU.

In this manner, a program stored in a file or separated
into plural files is loaded to an available memory area.
This is called "dynamic relocation".

Chapter 10 Addressing

10.1 Instruction Address
The current address of uPD70108/70116 is automatically
incremented every time an instruction is executed. In
addition, the microprocessor is provided with the
following addressing methods for controlling execution
procedure of instructions.

10.1.1 Direct addressing

A 2- or 4-byte immediate data in an instruction is
directly loaded to the PC alone or to both the PS and PC.
The immediate data is then used as a branch address.
This addressing method is employed when executing the
following instructions.

CALL far-proc

CALL memptrl6

CALL memptr32

BR far-label

BR memptrlé

BR memptr32

10.1.2 Relative addressing

A 1- or 2-byte immediate data in an instruction is treated
as a signed displacement value and added to the contents
of the PC. The result of this addition is used as a
branéh address.
The sign bit of an 8-bit displacement value is extended
and added to the contents of the PC as a 16-bit data.
When the addition is performed, the contents of the PC
indicate the first address of the next instruction.
This addressing method is employed when executing the
following instructions,

CALL near-proc

BR near-label

BR short-label

Conditional Branch Instruction short-label

10-1

10.1.3 Register addressing
The contents of any 16-bit register specified by the
register-specifying f£ield (3 bits) of an instruction are
loaded to the PC as a branch address. Unlike when an
.immediate data is used as a branch address, this
addressing method allows all the eight 16-bit registers
(AW, BW, CW, DW, IX, IY, SP, and BP) to be used. This
addressing method is used when executing the following

instructions:

Example
CALL regptr 16 CALL AW
BR regptr 16 BR BW

10.1.4 Register indirect addressing
A 16-bit register (IX, 1Y, or BW) is specified by the
register-specifying field in an instruction. The
specified register then addresses the contents of the
memory (word or double word).
The addressed contents are then loaded to the PC (or to
both the PC and PS) as a branch address.

CALL memptrlé CALL WORD PTR [IX]
CALL memptr32 CALL DWORD PTR [IY]
BR memptrlé BR WORD PTR [BW]
BR memptr32 BR DWORD PTR [IX]

NOTE: Instruction code memptr 16 and memptr 32 are
generated by the assembler in response to keywords
WORD PTR and DWORD PTR, respectively.

10-2

10.1.5 Indexed addressing
A 1- or 2-byte immediate data in an instruction is
treated as a signed displacement value and is added
to the contents of a 16-bit register that serves as
an index register (IX or IY).
The result of this addition addresses memory operand
(word or double word) and it is loaded to PC as

branch address.

Example
CALL memptr 16 CALL var [IX]([2]
CALL memptr 32 CALL var [IY]
BR memptr 16 BR var [IY]
BR memptr 32 BR var [IX + 4]

10.1.6 Based addressing
A 1- or 2-byte immediate data in an instruction is
treated as a signed displacement value and is added
i BP or BW) that

\2Y Oor BbWw) id

to the contents of a 1
serves as base register. The contents of the memory
addressed by the result of this addition (word or
double word) are loaded to the PC as a branch
address.

This addressing method is employed when executing the

following instructions:

Example

CALL memptrlé CALL var [BP + 2]
CALL memptr32 CALL var ([BP]
BR memptrlé BR var [BW][2]
BR memptr32 BR var [BP]

NOTE: Instruction code memptr 16 is generated by the
assembler if variable var has a word attribute. If
it has a double word attribute, instruction code

memptr 32 is generated.

10.1.7 Based indexed addressing

A 1- or 2-byte immediate data in an instruction byte is
treated as a signed displacement value. This value is
added to the contents of a 1l6-bit register that serves as
a base register (BP or BW) and to the contents of a
16~bit register that serves as an index register (IX or
IY). The result of this addition addresses the contents
of the memory (word or double word). The addressed memory
contents are loaded to the PC as a branch address.
This addressing method is employed when executing the
following instructions:

CALL memptrlé

CALL memptr32

BR memptrlé

BR memptr32

Example
CALL var [BP] [IX]

CALL var [BW + 2] [IY]
[BW] [2] [1IX]

w
o
<
o
2]

o T r-
ar by T 4] (411}

0]
2

NOTE: Instruction code memptr 16 is generated by the
assembler if variable var has a word attribute, If
it has a double word attribute, instruction code
memptr 32 is generated.

10-4

10.2 Memory Operand Address
This secticn describes several addressing methods for
addressing registers or the memory when executing

instructions.

10.2.1 Register addressing
The contents of the register-specifying field (reg=3-bit
field, sreg=2-bit field) in an instruction addresses a
register. The 3-bit field "reg"is used in pairs with one
bit (bit W) that is in the same instruction and indicates
whether a word or a byte register is to be specified.
Eight types of word registers (AW, BW, CW, DW, BP, SP,
IX, and 1Y) and eight types of byte registers (AL, AH,
BL, BH, CL, CH, DL, and DH) are specified.
The 2-bit field"sreg"specifies four types of segment
registers (PS, SS, DSO, and DS1l).
On some occasions, the operation code of an instruction
specifies a register.
This addressing method is employed when executing the
following instructions that have the following operand-

writing formats:

Format Items
reg AW, BW, CW, DW, SP, BP, IX, IY, AL, AH,
BL, BH, CL, CH, DL, DH
regl6 AW, BW, Cw, DW, SpP, BP, IX, IY
reg8 AL, AH, BL, BH, CL, CH, DL, DH
sreg PS, SS, DsO, Dsl
acc AW, AL
Example
When MOV reg,reg is specified.
MOV BP,SP
MOV AL,CL

10-5

10.2.2 Immediate addressing
A l-or 2-byte immediate data in an instruction is
used as is.
This addressing method is employed when executing the
instructions that have the following operand-writing

formats:
Format Items
imm 8/16-bit immediate data
imml6 16-bit immediate data
imm8 8-bit immediate data
pop-value 16-bit immediate data

If imm alone is specified, the assembler checks the value
of imm written as an operand or the attribute of other
operands that may be written at the same time and judges
whether the value of imm is 8 bits or 16 bits. The status
of word/byte-specifying bit W is then determined.

Example
When MOV reg,imm is specified

MOV AL, 5: byte
When MUL reglé,regl6,immlé is specified
MUL AW,BW,1000H

10.2.3 Direct addressing
The immediate data in an instruction addresses the
memory.
This addressing method is employed when executing the
instructions that have the following operand-writing

formats:
Format Item
mem 16-bit variable that specifies an 8- or
16-bit memory data
dmem 16-bit variable that specifies an 8- or

16-bit memory data
imm4 4-bit variable that indicates the bit
length of the bit field data
10-6

Example
When MOV mem,imm is specified

MOV WORD-VAR, 2000H
When MOV acc,dmem is specified
MOV AL,BYTE-VAR

10.2.4 Register indirect addressing
A 16-bit register (IX, IY, and BW) specified by the
memory-specifying field in an instruction addresses the
memory .
This addressing method is employed when executing the
instructions that have the following operand-writing for-

mats:
Format Method

mem [1x],[1Y],[BW]
Example

When SUB mem,reg is specified
SUB [IX],AW
10.2.5

« o muTlInCrementc/—Gecrement adlrcesSSing

This addressing method falls into the category of
register indirect addressing.

The contents of a default register addresses a register
or memory. Then the contents of the default register are
automatically incremented/decremented by one if a byte
process is performed. If it is a word process, the
register contents are incremented/decremented by two.
Stated another way, the address is automatically modified
by this addressing function for processing the next
byte/word operand. This addressing method is always
applicable to default registers and is employed when exe-
cuting the instructions that have the following operand
formats:

10-7

Format Default register
dst-block IY
src-block IX

This addressing will control block data operations if it
is used in combination with a counter (CW) that counts
the number of repetitions of a byte/word operand

operation.

10.2.6 Indexed addressing
A 1- or 2-byte immediate data in an instruction is
treated as a signed displacement value and is added to
the contents of a 16-bit register that serves as an index
register (IX or IY). The result of this addition
addresses a memory operand.
This addressing is useful when accessing an array of
data. The displacement value indicates the start address
of the array.
The contents of the index register determines the address
of the data to be accessed.
This addressing method is employed when executing the
instructions that have the following operand-writing

formats:

Format Method
mem var [IX], var [IY]
meml6 var [IX]
mems8 var [IX]

Example

When TEST mem,imm is specified
TEST BYTE-VAR[IX] ,7FH
TEST BYTE-VAR[IX+8], 7FH
TEST WORD-VAR(IX][8],7FFFH

10-8

NOTE: If variable var has a byte attribute, a byte
operand is specified. If it has a word attribute, a
word operand is specified. An instruction code is
generated by the assembler to each operand.

10.2,.,7 Based addressing
A 1- or 2-byte immediate data in an instruction is
treated as a signed displacement value and is added to
the contents of a 16-bit base register that serves as a
base register (BP or BW). The result of this addition
addresses a memory operand.
This addressing is useful to access structural data that
are stored at separate memory locations. The base
register indicates the start address of each structural
data and the displacement value selects one piece of data
from each structural data.
This addressing method is employed when executing the
instructions that have the following operand-writing

format:
Format Method
mem var[BP] ,var[BW]
memlé6 var [BP]
mem8 var[BP]
Example

When SHL mem,l is specified
SHL BYTE-VAR[BP],1
SHL WORD-VAR[BP+2],1
SHL BYTE-VAR([BP] [4],1

NOTE: If variable var has a byte attribute, a byte
operand is specified. If it has a word attribute, a
word operand is specified. An instruction code
corresponding to each operand is generated by the

assembler,

10-9

10.2.8 Based indexed addressing
A 1- or 2-byte immediate data in an instruction is
treated as a signed displacement value that is added to
the contents of two 1l6-bit registers.
One of the registers serves as a base register (BP or BW)
and the other as an index register (IX or IY). The
result of the addition addresses a memory operand.
Since this addressing method allows accessing one data by
modifying the contents of both the base and index
registers, it is very useful when accessing structural
data that are stored at separate memory locations and
include data array.
For example, the contents of the base register indicates
the first address of each structual data. The
displacement value in turn indicates the number of
offsets from that first address to the first address of a
data array.
Then the index register can indicate a specific data in
the data array.
This addressing method is employed when executing

instructions that have the following operand-writing
format:
Format Iten
mem var [base register] [index register]
meml6 var [base register] [index register]
mem8 var [base register] [index register]
Example

When PUSH memlé is specified
PUSH WORD-VAR [BP] [IX]
PUSH WORD-VAR [BP+2] [IX+6]
PUSH WORD-VAR [BP] [4] [1X] [8]

10-10

10.2.9 Bit addressing
A 3- or 4-bit immediate data in an instruction or lower 3-
or 4-bit of the CL register specifies one bit of the 8-
or l6-bit register or memory.
By using this addressing method, a specific single bit in a
register or the memory can be tested (for 0 or 1), set,
cleared, or inverted without affecting the contents of
other bits. That is, unlike when setting or resetting a
bit by using the AND or OR instruction, a byte or word
data does nct have to be prepared to operate one bit.
This method is employed when executing the instructions
that have the following operand-writing formats:

Format Item
imm4 Bit number of word operand
imm3 Bit number of byte operand
CL CL

Example

TEST1 reg8,CL

TEST1 AL,CL

NOT1 reg8,imm3

NOT1l CL,5

CLR1 memlé6,CL

CLR1 WORD-VAR[IX],CL
SETlL memlé6,imm4

SET1 WORD-VAR[BP],9

10-11

Chapter 11 Implementation of Faster Execution

To reduce the time required to execute instructions, the
uPD70108 comes with these hardware functions.

Dual data bus in EXU

Effective address generator

16/32-bit temporary registers/shifters (TA, TB)
16-bit loop counter

PC and PFP

11-1

11.1 Dual Data Bus Method

To reduce the number of processing steps for instruction
execution, the dual data bus method has been adopted for the
uPD70108/70116. The two data buses (the main data bus and the
subdata bus) are bgth 16 bits wide. For addition/subtraction
and logical and comparison operations, processing time has been
speeded up some 30% over single-bus systems.

A

1l

Resisters

16 16

T
e =TTV
Shifters

A |
: =)

—

Main Data Bug

~J
Sub-data Bus

Example

ADD AW, BW ;AW ¢ AW + BW

Single bus Dual bus
Step 1 ALU « AW ALU « AW, BW
Step 2 ALU « BW AW ¢ ALU

Step 3 AW ¢ ALU

11-2

11.2 Effective Address Generator

This circuit performs high-speed processing to calculate
effective addresses required when accessing memory.

Calculationg an effective address by the microprogramming
method normally requires 5 to 12 clock cycles. This hardware
circuit, however, reserved only for calculating effective
addresses, requires only two clock cycles for addresses to be
generated for any addressing mode. Thus, processing is several
times faster with this highly effective hardware assist.

T T
mod mem

EA GENERATOR

Effective address

11.3 16/32-Bit Temporary Registers/Shifters (TA,TB)

These temporary registers/shifters (TA,TB) are provided for
multiplication/division and shift/rotation instructions.

Adopting these circuits has particularly speeded up execution
of mulitplication/division instructions. 1In fact, these
instructions can be executed about four times faster than with
the microprogramming method.

TA + TE: 32-bit temporary register/shifter for multiplication
and division instructions

TB: 16-bit temporary register/shifter for shift/rotation
instructions

11.4 Loop Counter (LC)

This counter is used to count the number of loops for a
primitive block transfer instruction controlled by a repeat
prefix instruction and the number of shifts that will be
performed for a multiple bit shift/rotation instruction.

The processing performed for multiple bit rotation of a
register is shown below. The average speed is approximately
doubled over the microprogram method.

Example

RORC AW, CL ;CL=5

Microprogram method LC method

8 + (4 x 5) = 28 clocks 7 + 5 =12 clocks

11.5 PC and PFP

The uPD70108 microprocessor has a program counter which
addresses the program memory location to be executed next, and
a prefetch pointer, which addresses the program memory location
to be fetehed next. Both functions are provided by hardware.

A time savings of several clocks is realized for branch, call,
return, and break instruction execution, compared with
microprocessors that have only one instruction pointer.

11-4

Identifier

Table 12-1 Operand Types

Description

reg
regs8
reglé
mem
mem8
memlé
mem32
dmem
imm
imm3
imm4
imm8

immlé

near-proc
far-proc
near-label
short-label

far-label

8- or 16-bit general-purpose register
8-bit general-purpose register

16-bit general-purpose register

8- or 16-bit memory address

8-bit memory address

16-bit memory address

32-bit memory address

16-bit direct memory address

8- or 16-bit immediate data

3-bit immediate data

4-bit immediate data

8-bit immediate data

16-bit immediate data

AW or AL accumlator

Segment register

Name of 256-byte translation tabile

Name of source block addressed by IX register
Name of destination block addressed by IY
register

Procedure within current program segment
Procedure located in another program segment
Label in current program segment

Label within range of -128 or +127

bytes from end of instruction

Label in another program segment

12-1i

Table 12-2 Operand Types
(continued from Table 12-1)

Identifier Description

regptrlé 16-bit general purpose register containing
offset of call address within current
program segment

memptrls 16-bit memory address containing offset of
call address within current program segment

memptr32 32-bit memory address containing offset of

pop-value

fp-op

R
DSl-spec

Seg-~spec

call address and segment data in another

program segment

Number of bytes of the stack to be discarded
(0 - 64K, usually even addresses)

Immediate value to identify instruction code

of the external flating point processor chip

Register set (AW, BW, CW, DW, SP, BP, IX, IY)
1) DSl

2)Segment or

r1am! X DS1

1)Any name of segment register

2)Segment or Group name assumed to segment
register

May be omitted

12-ii

Table 12-3 Instruction Words

Identifier Description

W Word/Byte specification bit (l-word,O-byte)

reg 8/16 bit general register specification bit
(000-111)

mod ,mem memory addressing specification bits
(mod-00-10 ,mem~000-111)

(disp-low) optional 16-bit displacement lower byte

(disp~high) optional 16-bit displacement higher byte

disp-low 16-bit displacement lower byte for PC relative
addition

disp-high 16-bit displacement higher byte for PC relative
addition

imm3 3-bit immediate data

immé 4-bit immediate data

imm8 8-bit immediate data

imml6~low 16-bit immediate data lower byte

imml6~high 16-bit immediate data higher byte

addr-low 16-bit direct address lower byte

addr-high 16-bit direct address higher byte

sreg segment register specification bit

s sign-sxtention specification bit (l-sign

extention,0-no sign extention)

12-iij

Table 12-4 Instruction Words (continued)

Identifier

Description

offset-low
offset-high

seg-low

seg-high

pop-value-low

pop-value-hihg

disp 8

X

XXX
YYY
2722

Low byte of 16-bit offset data loaded to PC
High byte of l6-bit offset data loaded to
PC

Low byte of 16-bit segment data loaded to
PS

High byte of 16-bit segment data loaded to
PS

Low byte of 16-bit data which specifies
number of bytes of stack to be discarded
High byte of 16-bit data which specifies
number of bytes of stack to be discarded
8-bit displacement added to PC

Operation codes for external floating
Point processor chip

12-iv

Table 12-5 Operation description

Identifier Description

AW i Accumulator (16 bits)

AH Accumulator (high byte)

AL Accumulator (low byte)

BW BW registor (16 bits)

CwW CW register (16 bits)

CL CW register (low byte)

DW DW register (16 bits)

SP Stack pointer (16 bits)

PC Program counter (16 bits)

PSW Program status word (16 bits)

IX Index register (source) (16 bits)
IY Index register (destination) (16 bits)
PS Program segment register (16 bits)
DS1 Data segment 1 register (16 bits)
AC Auxiliary carry flag

cYy Carry flag

P Parity flag

S Sign flag

2 Zero flag

DIR Direction flag

IE Interrupt enable flag

v overflow flag

BRK Break flag

MD Mode flag

(o) Values in parentheses are memory contents
disp Displacement (8 or 16 bits)

temp Temporary register (8, 16, or 32 bits)
seg Immediate segment data (16 bits)
offset Immediate offset data (16 bits)

« Transfer direction

+ Addition

- Subtraction

X Multiplication

12-v

gg{<>wn

Table 12-6 Operation description(continued)

Division

Modulo

Logical and

Logical or

Exclusive or
Hexadecimal 2-digit data
Hexadecimal 4-digit data

12-vi

Table 12-7 Flag Operations

Identifier

Description

(blank) No change

0 Cleared to 0

1 Set to 1

X Set or cleared according to the result

U Undefined

R Value saved earlier is restored

Table 12-8 Memory Addressing
mem mod 00 01 10

000 BW +IX BW +IX +disp 8 BW +IX +disp 16
001 BW+IY BW+IY +disp 8 BW+IY +disp 16
010 BP +IX BP +IX+disp 8 BP +IX +disp 16
011 BP +IY BP +IY +disp 8 BP +IY +disp 1§
100 IX IX +disp 8 IX +disp.16
101 Iy IY +disp 8 IY +disp 16
110 DIRECT ADDRESS BP +disp 8 BP +disp 16
111 BW BW +disp 8 BW +disp 16

Table 12-9 Selection of 8- and 1l6-bit Registers

reg W=0 W=1
000 AL AW
001 CcL cw
010 DL DW
011 BL BW
100 AH SP
101 CH BP
110 DH IX
111 BH Y

12-vii

Table 12-10 selection of Segment Registers

sreg
00 DS1
01 PS
10 SS
117 - DSO

The following pages show the format and descriptions for
the different instructions of the instruction set.

No. of clocks inc¢ludes these times;
Decoding
* EA Generation
Operand fetch
Execution

and assumes the instruction byte (s) have been

prefetched.

12-viii

12.1 Data Transfer Instructions

12.1.1 MOV (Move)

{1) Register to register

1)

2)

3)

4)

5)

6)

7)

8)

Description format
MOV reg,reg

Instruction format

7 0 7 6 5 3 2 0

Ll 00010 1W|1 1! reg ‘ reg l

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

Transfers the contents of the 8- or 16-bit register
specified by the second operand to the 8- or 16-bit
register specified by the first operand.

reg + reg

Flag operation
None

Description example
MOV BP,SP

12-1

2) Register to memory

1)

2)

3)

4)

5)

6)

7)

8)

Description format

MOV mem, reg

Instruction format
7 07 6 5

3 2 0
llOOOlOOW'mcd. reg merﬂ

7]

7 1}
l (disp-low) 1 (disp-high) Aj

Number of bytes
2/3/4

Number of clocks
When W=0, 9
When W=1, 13: uPD70108
uPD70116 odd addresses
9: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Transfers the contents of the 8- or 16-bit register
specified by the second operand to the 8- or 16-bit
memory location specified by the first operand.

(mem) <« reg

Flag operation
None

Description example
MOV [BP] [IX],AW

12-2

(3) Memory to register

1)

2)

3)

4)

5)

6)

7)

8)

Description format

MOV reg,mem

Instruction format

7T 07T 6 S 3 2 Q
llOOOlOl\Vimod[rengem]
1 0 7 0

[(disp-1low) (disp-high) }

Number of bytes
2/3/4

Number of clocks
When W=0, 11
When W=1, 15: pyPD70108
uPD70116 odd addresses
11: uyPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Transfers the 8- or 16-bit memory contents specified
by the second operand to the 8- or 1l6-bit register
specified by the first operand.

reg « (mem)

Flag operation
None

Description example
MOV AW, [BW][IY]

12-3

(4) Immediate data to memory

1) Description format

MOV mem, imm

2) Instruction format
7 07 6 5 3 2 0

[1100011w]mod‘000‘mem}

7 07 0

[(disp-low) l (disp-high) }

7 07 0

l imm8 or immlG—lowJ imml6-high I

3) Number of bytes
3/4/5/6

4) Number of clocks
When w=0, 11
When W=1, 15: puPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Transfers the 8- or 16-bit immediate data specified
by the second operand to the 8- or 1l6-bit memory
location addressed by the first operand.

(mnm) <+« imm

7) Flag operation

None

8

~

Description example
MoV [BP] [IX],0000H

12-4

(5) Immediate data to register

1) Description format

MOV reg, imm

2) Instructicn format

T 3 2 07 07 b}

101 1W reg | immB or imml6-low imml6-high J

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of l6-bit words

None

6) Function
Transfers the 8- or 16-bit immediate data specified
by the second operand to the 8- or 16-bit register
specified by the first operand.

reg <« imm

7) Flag operation

None

8) Description example
MOV BP, 8000H

12-5

(6) Memory to accumulator

1) Description format

MOV acc,dmem

2) Instruction format

7 07 [0

101000 0W addr-low addr-hig* 1

3) Number of bytes
3

4) Number of clocks
When w=0, 10
When W=1, 14: uPD70108
uPD70116 odd addresses
10: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Transfers the memory contents addressed by the second
operand to the accumulator (AL or AW) specified by the
first operand.

When W=0 AL « (dmem)

When W=1 AW « (dmem +1, dmem)

7) Flag operation

None

(7) Accumulator to memory

1) Description format
MOV dmem, acc

2) Instruction format
7 07 0

-
o

[1 01000 1 W addr-low addr-high

3) Number of bytes
3

4) Number of clocks
When wW=0, 9
When W=1, 13: uPD70108
uPD70116 odd addresses
9: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Transfers the contents of the accumulator (AL or AW)
specified by the second operand to the 8- or 1l6-bit

memory location addressed by the first operand.

When W=0 (dmem) <« AL
When W=1 (dmem +1, dmem) +« AW

7) Flag operation
None

12-7

(8) Register to segment register

1) Description format

2)

3)

4)

5)

6)

7)

8

~

MOV sreg,regl6

Instruction format

7 07 5 4 32 0

T T
(10001110&109\% reg]

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

sreg < reglé6

Transfers the contentes of the 16-bit register
specified by the second operand to the segment
register (except PS) specified by the first operand.
However, external interrupts (NMI, INT) or a
single-step break is not accepted during the period
between this instruction and the next instruction.

Flag operation
None

Description example
MOV SS,AW

12-8

(9) Memory to segment register

1) Description format
MOV sreg,meml6

2) Instruction format
7 0 7T 65 4 3 2 0

] T T I
[10001110|m0d05reg memJ

7 07 0

I (disp-low)] (disp-high) I

3) Number of bytes
2/3/4

4) Number of clocks
When w=0, 11
When W=1, 15: uPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function

sreg « (meml6)

Transfers the 1l6-bit memory contents addressed by the
second operand to the segment register (except PS)
specified by the first operand.

However, external interrupts (NMI, INT) or a
single-step break is not accepted during the period
between this instruction and the next instruction.

7) Flag operation
None

8) Description example
MOV DSO0,SEG[BW] [IX]

(10) Segment register to register

1) Description format
MOV reglé6,sreg

2) Instruction format
T 07 6 5 4 3 2 0

l1ooo1100[110 sregrng

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words

None
6) Functi
rs the contents of the segment register

d by the second operand to the 16-bit
specified by the first operand.

reglé + sreg

7) Flag operation

None

8) Description example
MOV AW,DS1

12-10

(11)

1)

2)

3)

4)

5)

6)

7)

8)

Segment register to memory

Description format
MOV meml6,sreg

Instruction format
7 07 6 5 4 3 2 0

[10 00110 0|/md 0 sreg mmJ

T o7 0

I (disp-low) I (disp-high) J

Number of bytes
2/3/4

Number of clocks
When wW=0, 10
When W=1, 14: uPD70108
uPD70116 odd addresses
10: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Transfers the contents of the segment register spec-
ified by the second operand to the 16-bit memory
location addressed by the first operand.

(meml6) « sreg

Flag operation
None

Description example
MOV [IX],PS

12-11

(12) 32-bit memory to 16-bit register and DSO

1) Description format
MOV DSO,regl6,mem32

2) Instruction format
7 07 6 s 3 2 0

L£71 0 0010 1§mod reg ’ mem }
7 07 0

l (disp-low) (disp-high) I

3) Number of bytes
2/3/4

4) Number of clocks
26: uPD70108
uwPD70116 odd addresses
18: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function

reglé « (mem32)
DSO + (mem32 + 2)

Transfers the lower 16 bits (offset word of a 32-bit
pointer variable) addressed by the third operand to
the 16-bit register specified by the second operand,
and the higher 16 bits (segment word) to the DSO
segment register.

7) Flag operation

None

12-12

(13) 32-bit memory to l6-bit register and DSl

1) Description format
MOV DS1,regl6,mem32

2) Instruction format

T 0 7T 6 s 3 2 0
(1 100010 O(mod‘ reg l mem J
7 07 0
i (disp-low) | '(disp-high)gJ

3) Number of bytes
2/3/4

4) Number of clocks
26: uPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
reglé « (mem32)
DS1 + (mem32 + 2)

Transfers the lower 16 bits (offset word of a 32-bit
pointer variable) addressed by the third operand to
the 16-bit register specified by the second operand,
and the higher 16 bits (segment word) to the DSl
segment register.

7) Flag operation
None

12 - 13

(14) PSW to AH

1) Description format
MOV AH,PSW

2) Instruction format
7 0

[l
ltoo1 111 1]

3) Number of bytes
1

4) Number of clocks
2

S) Number of transfers of 16-bit words

None

6) Function
AH « S,2,X,AC,X,P,X,CY

Transfers each of flags S, Z, AC, P, and CY of PSW
to the AH register. Bits 5, 3, and 1 will be

undefined.

7) Flag operation

None

8) Description example
MOV AH, PSW

12-14

(15) AH to PSW

1) Description format
MOV PSW,AH

2) Instruction format
7)

10011110

3) Number of bytes
1

4) Number of clocks
3

5) Number of transfers of 16-bit words

None

6) Function

s$,2,X,AC,X,P,X,CY « AH

Transfers bits 7, 6, 4, 2, and 0 of the AH register
to each of flags S, Z, AC, P, and CY of PSW.

7) Flag operation

T T T T g

v S Z AC P CYy

8) Description example
MOV PSW, AH

12-15

12.1.2 LDEA (Load Effective Address to register)

1) Discription format
LDEA regl6,meml6

2) Instruction format
7 07T 6 5 3 2 0

. T
Il 000110 IJmod reg mmng

7 07 0
I (disp-low) i (disp-high)
3) Number of bytes
2/3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Loads the effective address (offset) generated by the
second operand to the 16-bit general purpose register
specified by the first operand.
This is used to set starting address values to the
registers used to automatically specify the operand for
TRANS or block instructions.

reglé « memlé

7) Flag operation

12-16

12.1.3 TRANS/TRANSB (Translate byte)

1) Description format
TRANS src-table
TRANS (no operand)
TRANSB (no operand)

2) Instruction format

T 0
l1101011ﬂ

3) Number of bytes
1

4) Number of clocks
9

5) Number of transfers of 1l6=-bit words
1

6) Function
Transfers to the AL register one byte specified by
the BW and AL registers from the 256 byte con-
version table.
This time, the BW register specifies the starting
(base) address of the table, while the AL register
specifies the offset value within 256 bytes from
the starting address.

AL « (BW + AL)

7) Flag operation

None

12-17

12.1.

(1)

1)

2)

3)

4)

5)

6)

8)

4 XCH (Exchange)

Register with register

Description format
XCH reg,reg

Instruction format
7 07 6 5 32

2 Q
100001 1W[1 reg'rng

Number of bytes
2

Number of clocks
3

Number of transfers of 16-bit words

None

Function

Exchanges the contents of the 8- or 16-bit register
specified by the first operand with the contents of
the 8- or 16-bit register specified by the second
operand.

reg +* reg

Flag operation

None

Description example
XCH AW, BW

12-18

(2) Memory with register

1) Description format

2)

3)

4)

5)

6)

7)

8

~

XCH mem,reg or XCH reg,mem

Instruction format
07 6 S 3 2

7 0
[TO 00011 W‘mod reg memJ
7 07 0

[(disp-low) ‘ (disp-high)]

Number of bytes
2/3/4

Number of clocks
When W=0, 16
When W=1, 24: yPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16=-bit words
2

Function

Exchanges the 8- or 16-bit memory contents addressed
by the first operand with the contents of the 8- or
16-bit register specified by the second operand.

(mem) +»> reg

Flag operation

None

Description example
XCH WORD_VAR[BP], CW

12-19

1)

2)

3)

4)

5)

6)

Accumulator with register

Description format

XCH AW,reglé or XCH reglé6, AW

Instruction format
7 3 2 0

{1 0 01 0 reg

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None

Function

Exchanges the contents of the accumulator (AW only)
specified by the first operand with the contents of
the 16=bit register specified by the second operand.

AW « reglé6

Flag operation

None

Description example
XCH AW, DW

12-20

12.2 Repeat Prefix

12.2.1 REPC (Repeat While Carry)

1)

2)

3)

5)

6)

Description format
REPC (no operand)

Instruction format

7 0
fail 10010 {J

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None

Function
While Cwx0, the block comparison instruction (CMPBK
or CMPM) placed in the following byte is executed
after which CW is decremented (-1).
If the result of the block comparison instruc-
tion is C¥xl, program execution exits the loop.
CW is checked before execution of the block com-
parison instruction. That is, against the condition
immediately before execution of the REPC instruc-
tion. Therefore, if CW=0 the first time the REPC
instruction is executed, the program will proceed
immediately to the instruction following the block
comparison instruction and the block
comparison instruction will not be executed even
once.
CY check is performed to test the result of the
block comparison instruction; the contents of CY
immediately before the first execution of the REPC
instruction are "don't care".

12-21

7)

8)

Flag operation
None

Description example
REPC CMPBKW

12-22

12.2.2 REPNC (Repeat While Not Carry)

1)

2)

3)

4)

5)

6)

7)

8)

Description format
REPNC (no operand)

Instruction format
7 0

01100100

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None

Function

While Cwx0, the block comparison instruction (CMPBK

or CMPM) placed in the following byte is executed

after which CW is decremented (-1). If the result of
the comparison instruction is CY=l1 program execution
exits the loop. CW is checked before execution of the
block comparison instruction. That is, against the con-
dition immediately before execution of the REPNC
instruction. Therefore, if Cw=0 the first time the REPNC
instruction is executed, the program will proceed imme-
diately to the instruction following the block com-
parison instruction and the block comparison
instruction will not be executed even once.

CY check is performed to test the result of the

block comparison instruction; the contents of CY
immediately before the first execution of the REPNC
instruction are "don't care".

Flag operation

None

Description example
REPNC CMPMB 12-23

4)

5)

6)

REP/REPE/REPZ (Repeat/Repeat while Equal/Repeat while
Zero)
Description format
REP (nc operand)
REPE/REPZ (no operand)
Instruction format
7 0
[1 1110011
Number of bytes
1
Number of clocks
2
Number of transfers of 16-bit words
None
Function

While CWx0, the block transfer/comparison/input/
output instruction is executed and CW is decremented
(-1).

REP is used with MOVBK, LDM, STM, OUTM, or INM
instruction and performs repeat operation while CW*0
but disregarding 2z flag.

REPZ or REPE is used with CMPBK or CMPM instruction.
A program will exit the loop if the comparison result
by each block instruction is Z=1 or when CW becomes
0.

CW is checked before execution of the block
instruction. That is, it is done against the
condition immediately before the execution of
REP/REPE/REPZ instruction. Consequently, if CW=0 the
first time the REP/REPE/REPZ instruction is executed,
the program will move to the instruction following
the block instruction and the block instruction will
not be executed even once.

12-24

7)

8)

Z check is performed against the result of the
block instruction; the contents immediately before
the first execution of the REPE/REPZ instruc-
tion are "don't care."

Flag operation

None

Description example
REP MOVBKW

REPZ CMPBKW

12-25

12.2.4 REPNE/REPNZ (Repeat while Not Equal/Repeat while Not

1)

2)

3)

4)

5)

6)

Zero)

Description format
REPNE/REPNZ (no operand)

Instruction format

7 0
L£,1 110010

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words
None

Function

While CW#0, the block comparison instruction
(CMPBK, CMPM) is executed after which CW is decre-
mented (-1).

If the result of the block comparison instruction
is z#0, program execution exits the loop.

CW is checked before execution of the block com-
parison instruction. That is, against the condition
immediately before execution of the REPNE/REPNZ
instruction. Consequently, if CW=0 the first time
the REPNE/REPNZ instruction is executed, the
program will proceed immediately to the instruction
following the block comparison instruction, and the
block comparison instruction will not be executed
even once.

2 check is performed to test the result of the
block comparison instruction; the contents of 2
immediately before the first execution of the
REPNE/REPNZ instruction are "don't care."

12-26

7) Flag operation
None

8) Description example

REPNE CMPMB
REPNZ CMPBKW

12-27

12.3 Primitive Block Transfer Instruction

Block Word)

1) Description format

12.3.1 MOVBK/MOVBKB/MOVBKW (Move Block/Move Block Byte/Move

(repeat) MOVBK {Dsl—spec:]dst-block,[Seg—spec:]src—block

(repeat) MOVBKB (no operand)
(repeat) MOVBKW (no operand)

2) Instruction format
7 0

101001 0W

3) Number of bytes
1

4) Number of clocks
Repeat: When W=0, 11+8/rep
When W=1, 11+16/rep: uPD70108

uPD70116 odd,
11+12/rep: uPD70116 odd,
11+8/rep : uPD70116 even,

even addresses

Single operation:
When W=0, 11
When wW=1, 19 : uPD70108

uPD70116 odd,
15 : uPD70116 odd,
uPD70116 even,

even addresses

11

5) Number of transfers of 16-bit words
Repeat : 2/rep

S3ingle operation: 2

12-28

odd addresses

even addresses

odd addresses

even addresses

6) Function
When W=0, (IY) « (IX)
DIR=0: IX +« IX+1l, IY « IY+1
DIR=1: IX « IX-1l, IY « IY~1
When wW=1, (IY¥Y+1l, IY) « (IX+1l, IX)
DIR=0: IX « IX+2, IY « IY¥Y+2
DIR=1: IX « IX-2, IY « IY¥Y-2

Transfers the block addressed by the IX to the block
addressed by the IY by repeating byte or word data.

In order to transfer the next byte word, the IX or IY
register is automatically incremented (+1 or +2) or
decremented (-1 or -2) each time 1 byte or word is
transferred. The direction of the block is determined
by the direction flag (DIR).

Byte or word specification is made by the attribute of
the operand when the MOVBK is used. If the MOVBKB or
MOVBKW is used, it is specified directly to the byte or
word type.

The destination block must always be located within
the segment specified by the DS1 segment register;
segment override is disabled. On the other hand, the
default segment for the source block register is DSO,
and segment override is possible. The source block may
be located in the segment specified by any of the
segment registers.

7) Flag operation
None

12-29

12.3.2 CMPBK/COMPBKB/CMPBKW (Compare Block/Compare Block
Byte/Compare Block Word)

1)
(repeat) CMPBK
(repeat) CMPBKB

(repeat)

7 0

101001 1W

3) Number of bytes

1

4) Number of clocks

Repeat: When W=0,
When W=1,

Single operation:
When W=0,
When wW=1,

Description format
[DSl-spec:}dst-block,
src-block

Instruction format

7+14/rep
7+22/rep

7+18/rep
7+14/rep
13

21

17
13

(no operand)
CMPBKW (no operand)

.

[Seg-spec:]

uPD70108
uPD70116 odd,
uPD70116 odd,
uPD70116 even,
even addresses

odd addresses
even addresses

uPD70108
uPD70116 odd,
uPD70116 odd,
uPD70116 even,
even addresses

odd addresses

even addresses

5) Number of transfers of 16-bit words

Repeat H

Single operation:

2/rep
2

12-30

6)

Function

When W=0, (IX) - (IY)
DIR=0: IX « IX+l, IY « IY+l
DIR=1: IX « IX-1, IY « I¥Y-1
When W=1, (IX+1l, IX) - (IY+1l, IY)
DIR=0: IX « IX+2, IY « IY+2
DIR=1l: IX « IX-2, IY « IY¥=-2

Subtracts the block addressed by the IY from the block
addressed by the IX repeatedly byte by byte or word
by word, and the result is shown by the flag.

The IX or IY is automatically incremented (+1 or +2)
or decremented (=1 or -2) each time 1 byte or word

is processed to process the next byte or word. The
direction of the block is determined by the direction
flag (DIR).

Byte or word specification is made by the attribute of
the operand when the CMPBK is used. If the CMPBKB or
CMPBKW is used, it is specified directly to the byte or
word type.

The destination block must always be located within
the segment specified by the DS1 register; segment
override is disabled. On the other hand, default
segment register for the source block is DSO, and
segment override is possible. The source block may be
located in the segment specified by any (optional)
segment register.

7) Flag operation

12-31

12.3.3 CMPM/CMPMB/CMPMW (Compare Multiple/Compare -.Multiple
Byte/Compare Multiple Word)

1) Description format
(repeat) CMPM ([DSl-spec:ldst-block
(repeat) CMPMB (no operand)
(repeat) CMPMW (no operand)

2) Instruction format

7 0
Li,o 1011 ljz

3) Number of bytes
1

4) Number of clocks
Repeat: When W=0, 7+10/rep
When W=1, 7+l4/rep: uPD70108
pPD70116 odd addresses
7+10/rep: uPD70116 even addresses
Single operation:
When wW=0, 7

When W=1, 11 : uPD70108
: uPD70116 odd addresses
7 : pPD70116 even addresses

5) Number of transfers of 16-bit words
Repeat : 1/rep
Single operation: 1

6) Function

When W=0, AL - (IY)
DIR=0: IY « IY+l
DIR=1: IY « IY-1

When W=1, AW - (IY+l, IY)
DIR=0: 1Y « IY+2

DIR=1: IY « IY¥Y-2

12-32

7)

8)

Subtracts the block addressed by the IY from.the
accumulator (AL or AW) repeatedly byte by byte or word
by word, and the result is shown by the flag.

To process the next byte or word, the IY is automati-
cally incremented (+1 or +2) or decremented (-1 or =-2)
cach time 1 byte or word is processed. The direction of
the block is determined by the direction flag (DIR).
Byte or word specification is made by the attribute of
the operand when the CMPM is used. If the CMPMB or the
CMPMW is used, it is specified directly to the byte or
word type.

The destination block must always be located within the
segment specified by the DS1 segment register and

segment override is disabled.

Flag operation

Description example

REPC CMPM BYTE_VAR,BYTE_VAR
REPNC CMPMW

REPZ CMPMB

12-33

12.3.4 LDM /LDMB/LDMW (Load Multiple/Load Multiple Byte/
Load Multiple Word)

1) Description format
(repeat) LDM [Seg-spec:]src-block
(repeat) LDMB (no operand)
(repeat) LDMW (no operand)

2) Instruction format
k¢ 0

r
ll 010110 Yj

3) Number of bytes
1

4) Number of clocks
Repeat: When W=0, 7+9/rep
When W=1, 7+13/rep: uPD70108
uPD70116 odd addresses
7+9/rep : uPD70116 even addresses
Single operation:
When wW=0, 7
When w=1, 11 uwPD70108
uPD70116 odd addresses

.

7 : yPD70116 even addresses

5) Number of transfers of 16-bit words
Repeat : 1/rep

Single operation: 1

6) Function

When wW=0, AL « (IX)
DIR=0: IX « IX+1
DIR=1: IX « IX-1

When W=1, AW « (IX+1, IX)
DIR=0: IX « IX+2
DIR=1: IX « IX-2

12-34

7)

8)

Transfers the block addressed by the IX to the
accumulator (AL or AW) repeatedly byte by byte or word
by word.

To process the next byte or word the IX is automati-
cally incremented (+1 or +2) or decremented (-1 or -2)
each time 1 byte or word is processed. The direction of
the block is determined by the direction flag (DIR).
Byte or word specification is made by the attribute of
the operand when the LDM is used; if the LDMB or LIMW
is used, it is specified directly to the byte or word
type.

The default segment register for the source block is
DSO0, and segment override is possible. The source
block may be located within the segment specified by
any (optional) segment register.

Flag operation
None

Description example

REP LDM DSl: BYTE_VAR ; DS1 segment
REP LDMB ; DSO segment

12-35

12.3.5 STM/STMB/STMW (Store Multiple/Store Multiple Byte/
Store Multiple Word)

1)

2)

3)

4)

5)

6)

Description format
(repeat) STM [DSl-spec:]dst-block
(repeat) STMB (no operand)

(repeat) STMW (no operand)

Instruction format

7 0

1010101W

Number of bytes
1

Number of clocks
Repeat: When W=0,

When w=1,

Single operation:
When W=0,
When wW=1,

7+4/rep
7+8/rep: uPD70108

uPD70116 odd addresses
7+4/rep: uPD70116 even addresses
7
11 ¢ uPD70108

uPD70116 odd addresses

7 : uPD70116 even addresses

Number of transfers of 16=-bit words

Repeat :

Single operation:
Function
When W=0, (IY) <«
DIR=0: IY «
DIR=1l: IY «
When wW=1, (IY+1,
DIR=0: IY +
DIR=1: IY «

1/rep
1

AL
IY+1
IYy-1
IY) « AW
IY+2
IY-2
12-36

7)

8)

Transfers the AL or AW to the block addressed by IY
repeatedly byte by byte or word by word.

To process the next byte or word IY is automatically
incremented (+1 or +2) or decremented (-1 or =-2) each
time 1 byte or word is processed. The direction of the
block is determined by the direction flag (DIR).

Byte or word specification is made by the attribute of
the operand when the STM is used; if the STMB or the
STMW is used, it is specified directly to the byte or
word type.

The destination block must always be located within
the segment specified by the DS1 segment register, and

segment override is disabled.

Flag operation

None
Description example

REP STM DS1:WORD_VAR ;segment,register DSl
REP STMB ;segment, register DSl

12-37

12.4 Bit Field Manipulation Instructions

12.4,1 INS (Insert Bit Field)

(1) Register

1) INS reg8,reg8

2) Instruction format
7 07 0765 32)

T
I7)00011110011000111 reg reg

3) Number of bytes
3

4) Number of clocks
75 =103 : uPD70108
uPD70116 odd addresses

67 - 87 : uPD70116 even addresses

5) Number of transfers of 16-bit words
2 or 4

6) Function

Bit
length

15 0

AWLﬁ Y
|
: v

Bit (1Y)
offset , Byte offset

1 —4

Memory

Byte boundary Segment base
(Ds1)

12-38

Transfer the lower bits data of the 16-bit AW register
(bit length is specified by the 8-bit register of
the second operand) to the memory location deter-
mined by the byte offset (addressed by the DSl
segment register and the IY index register) and bit
offset (specified by the 8-bit register of the

first operand).

After the transfer is completed, the IY register and
the 8-bit register specified by the first operand
are automatically updated to point to the next bit
field.

For the 8-bit register of the first operand that
specifies the bit offset (maximum length: 15 bits),
only the lower 4 bits (0-15) will be valid. Also,
for the 8-bit register of the second operand that
specifies the bit length (maximum length: 16 bits),
only the lower 4 bits (0-15) will be valid. 0
specifies 1-bit length, and 15 specifies 16-bit
length.

Bit field data may overlap the byte boundary of

memory .

7) Flag operation

8) Description example

INS DL, CL

12-39

1)

2)

3)

4)

5)

6)

Immediate data

Description format
INS reg8, imm4

Instruction format
7 07 0

[00001111J00111001I

7 3 2 07 0

1
[11000 regj immd J

Number of bytes
4

Number of clocks
75-103 : uPD70108

uPD70116 odd addresses
67-87 : uPD70116 even addresses

Number of transfers of 16-bit words
2 or 4
Function
Bit length
15 0
aw A,
l Bit offse; Byte offset .
| v | [wemery
i W ‘ ?

Byte boundary Segment base
(DS1)

Transfer the lower bits data of the 16-bit AW register
(bit length is specified by the 4-bit immediate data
of the second operand) to the memory location
determined by the byte offset (addressed by the DSl
segment register and the IY register) and bit off-

set (specified by the 8-bit register of the first

operand) .

12-40

After the transfer is completed, the IY register
and the 8-bit register specified by the first
operand are automatically updated to point to the
next bit field.

For the 8-bit register of the first operand that
specifies the bit offset (maximum length: 15 bits),
only the lower 4 bits (0-15) will be valid. The
immediate data value of the second operand that
specifies bit length (maximum length: 16 bits) will
be valid only from 0-15. 0 specifies l-bit length,
and 15 specifies 16-bit length.

Bit field data may overlap the byte boundary of

memory.

7) Flag operation

8) Description example

INS DL, 12

12-41

12.4.

(1

1)

2)

3)

4)

5)

6)

2 EXT (Extract Bit Field)
Register

Description format

EXT reg8,reg8

Instruction format
7 o7
00001111l00110011!11 reg rng

Number of bytes
3

Number of clocks
25-52 : uPD70108

: uPD70116 odd addresses
21-44 : uPD70116 even addresses
Number of transfers of 16-bit words

1l or 2

Function

Bit Bit (IX)
length offset Byte offset

| z v/ emory

¢ T 4§ I o]

Byte boundary Segment base
(DS0)

15

w| o G777

\
\&

Loads to the AW register the bit field data whose
bit length is specified by the 8-bit register
specified as the second operand. The segment base
of the memory location of the bit field is spec-
ified by the 'DSO register, the byte offset by the
IX index register, and the bit offset by the 8-bit

12-42

register of the first operand. At the same time, Os
are loaded tc the remaining upper bits of the AW
register.

After transfer is completed, the IX register and the
8-bit register specified by the first operand are
automatically updated to point to the next bit field.
For the 8-bit register of the first operand that
specifies the bit offset (maximum length: 15 bits),
only the lower 4 bits (0-15) will be valid. Also

for the 8-bit register of the second operand that
specifies bit length (maximum length: 16 bits),

only the lower 4 bits will be valid.

0 specifies 1-bit length, and 15 specifies 16-bit
length. Bit field data may overlap the byte boundary

of memory.

7) Flag operation

8) Description example

EXT CL, DL

12-43

(2) Immediate data

1) Description format
EXT reg8,immé4

2) Instruction format
7 07 0

[0 000111 1[0 011101 1

i

7 3 2 07 0

[1 100 0’ reg | imm4 J

3) Number of bytes
4

4) Number of clocks
25-52 : uPD70108
: uPD70116 odd addresses
21-44 : uPD70116 even addresses
5) Number of transfers of 16-bit words
1l or 2
6) Function

Bit Bit (IX)
length offset, Byte offset

£ | ¢ §
¢ 3 4257 i T: . Memory

Byte boundary Segment base
(DS0)

o

:

Loads to the AW register bit field data (whose Dbit
length is specified by the 4-bit immediate data of
the second operand) from the memory location
specified by the byte offset (addressed by the DSO
segment register and the IX index register) and the
bit offset (specified by the 8-bit register of the
first operand).
12-44

7)

8)

After transfer is completed,the IX register-and the
8-bit register specified by the first operand are
automatically updated to point to the next bit field.
For the 8-bit register of the first operand that
specifies the bit length (maximum length: 15 bits),
only the lower 4 bits (0-15) will be valid. The
immediate data value of the second operand that
specifies bit length (maximum length: 16 bits) will
be valid only from 0-1i5.

0 specifies l-bit length, and 15 specifies 16-bit
length. Bit field data may overlap the byte boundary

of memory.

Flag operation

Description example

EXT CL, 8

12-45

12.5 Input/Output Instruction

12.5.1 IN (Input)

(1) Directly specified I/0 device

1) Description format

IN acc, imm8

2) Instruction format
7 07 0

111001 0W| imm8

3) Number of bytes
2

4) Number of clocks
When wW=0, 9
When W=1, 13: uPD70108
uPD70116 odd addresses
9: pPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Inputs the contents of the I/O device specified by the
second operand to the accumulator (AL or AW) specified

by the first operand.

When W=0 AL <« (imm8)

when W=1 AW « (imm8+1, imm8)

7) Flag operation

None

8) Description example

IN AL, 20H

12-46

(2) Indirectly specified (by DW) I/O device

1) Description format
IN acc,DW

2) Instruction format
7 0

ll 110110W

3) Number of bytes
1

4) Number of clocks

When W=0, 8
When w=1, 12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Inputs the contents of the I/O device specified by the
DW register to the accumulator (AL or AW) specified by
the first operand.

When W=0 AL <« (DW)
When W=1 AW « (DW+1,DW)

7) Flag operation
None

8) Description example

IN AL, DW

12-47

12.5.2 OUT (Output)

(1) Directly specified I/O device

1)

2)

3)

4)

5)

6)

7)

8)

Description format
OUT imm8,acc

Instruction format
07 0

7
111001 1W i mm8 J

Number of bytes
2

Number of clocks

When W=0,
When W=1, 12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Outputs the contents of the accumulator (AL or AW)
specified by the second operand to the I/O device
specified by the first operand.

When W=0, (imm8) « AL
When W=1, (imm8+1,imm8) <« AW

Flag operation
None

Description example

OUT 30H, AW

12-48

(2) Indirectly specified (by DW) I/O device

1) Description format
OUT DW,acc

2) Instruction format
7 0

i110111W

3) Number of bytes
1

4) Number of clocks

When W=0,
When W=1, 12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Outputs the contents of the accumulator (AL or AW)
specified by the second operand to the I/O device

specified by the first operand.

When W=0, (DW) « AL
When W=1, (DW+1l, DW) « AW

7) Flag operation

8) Description example

OUT DW, AW

12-49

12.6 Primitive Input/Output Instruction

12.6.1 INM (Input Multiple)

1) Description format
(repeat) INM [DSl-spec:]dst-block,DW

2) Instruction format
7 [

01101 10W

3) Number of bytes
1

4) Number of clocks
Repeat: When W=0, 9+8/rep
When W=1, 9+16/rep: uPD70108
uPD70116 odd-odd addresses
9+12/rep: uPD70116 odd-even addresses
9+8/rep : uPD70116 even-even addresses
Single operation:
When W=0, 10

When W=1, 18 : uPD70108
uPD70116 odd-odd addresses
14 : uPD70116 odd-even addresses
10 : uPD70116 even-even addresses

5) Number of transfers of 16-bit words

Repeat : 2/rep
Single operation: 2

6) Function

When W=0, (IY) « (DW)
DIR=0: IY « IY¥+l
DIR=1l: IY « IY-1
When W=1, (IY+1l, 1Y) « (DW+1l, DW)
DIR=0: IY « IY+2
DIR=1: IY « IY-2
12-50

7)

8)

Transfers the contents of the I/0 device addressed by
the DW register to the memory location addressed by
the IY index register.

When this instruction is used as a pair with a repeat
prefix (REP) instruction, the REP instruction controls
the number of times transfer will be repeated. When
transfers are repeated, the contents (address 6f the
I/0 device) of the DW register are fixed. However, to
transfer the next byte or word, the IY index register
is automatically incremented (+1 or +2) or decremented
(-1 or -2) each time 1 byte or word is transferred. The
direction of the block is determined by the direction
flag (DIR).

Byte or word specification is performed according to
the attribute of the operand. The INM instructions are
used with the REP instruction of the repeat prefix.
The destination block must always be located within
the segment specified by the DS1 segment register, and
the segment override is prohibited,

Flag operation
None

Description example
REP INM BYTE_VAR,DW

12-51

12.6.2 OUTM (Output Multiple)

1) Description format
OUTM DW, [seg-spec:]src-block

2) Instruction format

-3
=

3) Number of bytes
1

4) Number of clocks
Repeat: When W=0, 9+8/rep
When W=1l, 9+16/rep: uPD70108
uPD70116 odd-odd addresses
9+12/rep: uPD70116 odd-even addresses

9+8/rep : uPD70116 even-even addresses
Single operation:
When W=0, 10

When W=1, 18 : uPD70108
uPD70116 odd-odd addresses
14 : uPD70116 odd-even addresses
10 : uPD70116 even-even addresses

5) Number of transfers of 1l6-bit words

Repeat : 2/rep
Single operation: 2

6) Function

When W=0, (DW) <« (IX)
DIR=0: IX « IX+l
DIR=1: IX « IX-1
When W=1, (DW+1l, DW) « (IX+1l, IX)
DIR=0: IX « IX+2
DIR=1l: IX « IX=-2

12-52

7)

Transfers the memory contents addressed by the IX

index register to the I/0 device addressed by the DW
register. When this instruction is used as a pair with
a repeat prefix (REP) instruction, the REP controls the
number of times the transfer will be repeated. When
transfers are repeated, the contents (address of the
I/0 device) of the DW register are fixed, However, to
transfer the next byte or word, the IX index register
is automatically incremented (+1) or +2) or decre-
mented (-1 or -2) each time 1 byte or word is trans-
ferred. The direction of the block is determined by the
direction flag (DIR).

Byte or word specification is performed according to
the attribute of the operand. The OUTM instructions are
used with the REP instruction of the repeat prefix.

The default segment register for the source block is
DS0, and segment override is possible., The source block
may be located within the segment specified by any

(optional) segment register.

Flag operation
None

Description example

REP OUTM DS1l: BYTE_ VAR
REP OUTMB

12-53

12.7 Addition/Subtraction Instructions

12.7.1 ADD (Add)

(1) Register with register to register

1)

2)

3)

4)

5)

6)

8)

Description format
ADD reg,reg

Instruction format
7 07 6 5 3 2 0

00 0000 1W11 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

Adds the contents of the 8- or 16-bit register
specified by the second operand to the contents of the
8- or 16-bit register specified by the first operand,
and stores the result in the register specified by the
first operand.

reg « reg + reg

Flag operation

\Y S Z AC P CcY

X X X X X X

Description example
ADD AW, BW

12-54

(2) Memory with register to memory

1) Description format
ADD mem, reg

2) Instruction format

7 0 7T 6 3 3 2 0

T v
Io 00000 0Wmod reg mem]

7 07 0

i (disp-1low) [(disp-high) }

3) Number of bytes
2/3/4

4) Number of clocks
2

When W=0, 16
When W=1, 24: uyPD70108
pPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Adds the contents of the 8- or 16-bit register
specified by the second operand to the 8- or 16-bit
memory contents addressed by the first operand, and
stores the result in the memory location addressed

by the first operand.
(mem) + (mem) + reg

7) Flag operation

\ S 2 AC P (934

X X X X X X

8) Description example

ADD WORD_VAR, AW
12-55

(3) Register with memory to register

2)

3)

4)

5)

6)

7)

Description format
ADD reg,mem

Instruction format
7 G 7T 6 5 3 2

0
[o 00000 1Wmd reg ' me,rﬂ
7 0 7 0

L, (disp-1low) [(disp-high) AJ

Number of bytes
2/3/4

Number of clocks

When W=0, 11
When W=1, 15: uPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Adds the 8- or 16-bit memory contents addressed by the
second operand to the contents of the 8- or l6-bit
register specified by the first operand, and stores
the result in the register specified by the first
operand.

reg « reg + (mem)

Flag operation

v s 'z a ® c¥
r— X X X X x X

8) Description example

ADD AW, WORD_VAR
12-56

(4) Register with immediate data to register

1) Description format
ADD reg,imm

2) Instruction format
¢ 76 5 3 2 0

7
T T
|1ooooosw|11ooo reg‘J

1 017 0

I imm8 orinmds-lmwl imml6-high I

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words
None

6) Function
Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the 8- or 16-bit
register specified by the first operand, and stores
the result in the register specified by the first

operand.

reg + reg + imm

7) Flag operation

AC P CY

8) Description example
ADD AL, 10

12-57

(5) Register with immediate data to memory

1) Description format

ADD mem, imm

2) Instruction format
7 907 5 5 3 2 0

{1 00000 s'.v;mod‘o 0 0 mem

7 o7 0

' (disp-low) ‘ (disp—h'\g‘n)J

7 07 0

‘ imm8 or irmmlé-1ow ’ immld-high I

3) Number of bytes
3/4/5/6

4) Number of clocks

When w=0, 18
When W=1, 26: uPD70108

uPD70116 odd addresses
18: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Adds the 8- or 16-bit immediate data specified by the
second operand to the 8- or 16-bit memory contents
addressed by the first operand, and stores the result

in the memory location addressed by the first operand.

(mem) « (mem) + imm

7) Flag operation

8) Description example

ADD BYTE_VAR{BP], 100
12-58

(6) Accumulator with immediate data to accumulator

1) Description format
ADD acc,imm

2) Instruction format

7 9 7 07 0

0 000010 W| imm8 or irmlé-low imml6-high

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Adds the 8- or 1l6-bit immediate data specified by the
second operand to the contents of the accumulator (AL
or AW) specified by the first operand, and stores the
result in the accumulator specified by the first

operand.

When W=0 AL « AL + imm8
When W=1 AW « AW + immlé6
7) Flag operation

\ S Z AC P CcY

X X X X X X

8) Description example
ADD AL, 3

12-59

12.7.2 ADDC (Add with Carry)

(1) Register with register to register

1)

3)

4)

5)

6)

7)

Description format
ADDC reg,reg

Instruction format

7 0 7 6 § 3 2 0

0001001W1 1 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

Adds the contents of the 8- or 16-bit register
specified by the second operand and the contents of
the carry flag to the contents of the 8- or 16-bit
register specified by the first operand, and stores
the result in the registér specified by the first

operand.
reg +«+ reg + reg + CY

Flag operation

Z AC P ()4

12-60

(2) Memory with register to memory

1)

2)

3)

4)

5)

6)

7)

Description format
ADDC mem, reg

Instruction format

T 0 7 & 5 3 2 0
F 001000 WE mod ‘ reg ‘ mernJ
7 017 0
[(disp-low) ! (disp-high) J

Number of bytes
2/3/4

Number of clocks

When W=0, 16
When W=1, 24: uyPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Adds the contents of the 8- or 16-bit register
specified by the second operand and the contents of
the carry flag to the 8- or 16-bit memory contents
addressed by the first operand, and stores the result
in the memory location addressed by the first operand.

(mem) « (mem) + reg + CY

Flag operation

12-61

(3) Register with memory to register

1) Description format

ADDC reg,mem

2} TInstruction format

T 0 7 6 5 3 2 b
LOOOIGOI'\V?:‘:OQ' reg‘.—..emi

T o 7 0
l (disp-low) f (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks

When w=0, 11
When wW=1, 15: yPD70108
pPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Adds the 8- or 16-bit memory contents addressed by the
second operand and the contents of the carry flag to
the contents of the 8- or 16-bit register specified by
the first operand, and stores the result in the
register specified by the first operand.

reg + reg + (mem) + CY

7) Flag operation

12-62

(4) Register with immediate data to register

1) Description format
ADDC reg, imm

2) Instruction format
7 2 107 6 3 3 2 0

[1 00000SW11010 rng

7 [0

[imm8 or inmlﬁ-lowi immi6-high }

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers .of 16-bit words

None

6) Function
Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to
the contents of the 8- or 16-bit register specified
by the first operand, and stores the result in the
register specified by the first operand.

reg « reg + imm + CY

7) Flag operation

AC P CY

12-63

(5) Memory with immediate data to memory

1) Description format
ADDC mem, imm

2) Instruction format
7 210 7 6 5 3 2 [}

[toooo 0'S Wimod 010 memJ

07 0

T
L (disp-low) | (disp-high) J
7

07

0
l imm8 or imm16-1low i imml6-high 4J

3) Number of bytes
3/4/5/6

4) Number of clocks

When W=0, 18
When W=1, 26: uPD70108
pPD70116 odd addresses
18: uPD70116 even addresses
5) Number of transfers of 16-bit words
2

6) Function
Adds the 8- or 16-bit immediate data specified by
the second operand and the contents of the carry
flag to the 8- or 16-bit memory contents addressed
by the first operand, and stores the result in the
memory location addressed by the first operand.

(mem) « (mem) + imm + CY

7) Flag operation

12-64

(6) Accumulator with immediate data to accumulatdr

1) Description format
ADDC acc,imm

2) Instruction format

7 9 7 o7 0

[0 00101 0W immorimmlé-low | imml6-high]

3) Number of bdytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to
the accumulator (AL or AW) specified by the first
operand, and stores the result in the accumulator

specified by the first operand.

When W=0, AL « AL + imm8 + CY
when W=1, AW « AW + immlé + CY

7) Flag operation

T T 1 i T
N S Z AC P CY
X X X X X X

12-65

12.7.3 SUB (Subtract)

(1) Register fromregister to register

1) Description format

SUB reg,reg

2) Instruction format

T g 7 8 S 3

2
©

0010101 W11 reg reg

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Subtracts the contents of the 8- or 16-bit register
specified by the second operand from the contents
of the 8- or 1l6-bit register specified by the first
operand, and stores the result in the register
specified by the first operand.

reg « reg - reg

7) Flag operation

12-66

(2) Register from memory to memory

1)

2)

3)

4)

5)

6)

Description format

SUB mem, reg

Instruction format
7 07 6 5 3 2 [}

|001 010 owimod' reg memJ

7 07 0

l (disp-low) I (disp-high) }

Number of bytes
2/3/4

Number of clocks

When W=0, 16
When W=1, 24: uPD70108
pPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Subtracts the contents of the 8- or 16-bit register
specified by the second operand from the 8- or 16-bit
memory contents addressed by the first operand, and
stores the result in the memory location addressed by
the first operand.

AC P CY

12-67

(3) Memory from register to

1) Description format

SUB reg,memnm

2) Instruction format
7 0 7 6 5 3

register

Io 010101 Wmod reg

7 e 7

L (disp-low)

(disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks

When wW=0, 11

When W=1, 15: uPD70108

uPD70116 odd addresses

11:

5) Number of
1

6) Function

uPD70116 even addresses

transfers of 16-bit words

Subtracts the 8- or 16-bit memory contents addressed

by the second operand from the 8- or 16-bit register

specified by the first operand, and stores the result

in the register specified by the first operand.

reg « reg - (mem)

7) Flag operation

T T T T

\ S Z AC

CcYy

X X X X

12-68

{(4) Immediate from register to register

1) Description format

SUB reg, imm

2) Instruction format

T 0 7 6 5 3 2 0
P]
100000SW11101 reg i
! .
7 [0
{ i or imm16-low immlS-high |

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or
16-bit register specified by the first operand, and
stores the result in the register specified by the

first operand.

reg « reg - imm

7) Flag operation

12-69

(5) Immediate data from memory to menory

1) Description format

SUB mem, imm

2) Instruction format
7 0 T 6 35 3

2 0
‘1 00000SWmed 1 01 rnemJ
0

7 07

‘ (disp-low) | (disp-high)J

7 0T 0

| imm8 or imml6-1low l imml6-high]

3) Number of bytes
3/4/5/6

4) Number of clocks
When W=0, 18
When W=1, 26: uPD70108
uPD70116 odd addresses
18: yPD70116 even addresses

5) Number of transfers of 16-bit words

2

6) Function
Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory
contents addressed by the first operand, and stores
the result in the memory location addressed by the
first operand.

(mem) <« (mem) - imm

7) Flag operation

AC P CY

12-70

(6) Immediate data from accumulator to accumulatdr

1) Description format

SUB acc, imm

2) Instruction format

7 07 0 7 0

{o 0101 10W immdor immlé~low| immlé-high J

3) Number cf bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand, and stores the result
in the accumulator specified by the first operand.

When W=0, AL « AL - imm8
when W=1, AW « AW - immlé6

7) Flag operation

1 T T i T
v S 2 AC P CY
X X X X X X

12-71

12.7.4 SUBC (Subtract with Carry)

(1) Register fromregister to register

1) Description format
SUBC reg,reg
2) Instruction format
7 07 6 5 3 2 0
000110 1W11 reg reg
3) Number of bytes
2
4) Number of clocks
2
5) Number of transfers of 16-bit words
None
6) Function
Subtracts the contents of the 8- or 16-bit register
specified by the second operand and the contents of
the carry flag from the 8- or 1l6-bit register
specified by the first operand.
reg « reg - reg - CY
7) Flag operation
} T T 1 T
AC CY
X X X X

12-72

(2)

1)

2)

3)

4)

5)

6)

7)

Register from memory toc memcry

Description format
SUBC mem,reg

Instruction format

7 0 7 6 5 3 2 0
[0001100Wmd reg mem |
7 07 0
l (disp-1low) (disp-high) J

Number of bytes
2/3/4

Number of clocks

When W=0, 16
When W=1, 24: uPD70108
uwPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Subtracts the contents of the 8- or 16-bit register
specified by the second operand and the contents of
the carry flag from the 8- or 16-bit memory contents
specified by the first operand, and stores the result
in the memory location addressed by the first operand.

(mem) « (mem) - reg - CY

Flag operation

12-73

(3) Memory from register to register

1) Description format
SUBC reg,mem

2) Instruction format
7 07 6 3 3 2 0

0001 101 Wmod res

T 0 7 0

‘ (disp~-low) (disp-high) ‘

3) Number of bytes
2/3/4

4) Number of clocks

When w=0, 11
When W=1, 15: pPD70108

uPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 1l6-bit words
1

6) Function
Subtracts the contents of the 8- or 16-bit memory
addressed by the second operand and the contents of
the carry flag from the 8- or 16-bit register spec-
ified by the first operand, and stores the result in

the register specified by the first operand.

reg + reg - (mem) - CY

7) Flag operation

12-74

(4) Immediate data from register to register

1) Description format
SUBC reg,imm

2) Instruction format
7 07 6 3 32 0

K ; ,
‘1oooooswi11011 reg |

7 0 7

0
o tow | immis-high |
l irm8 or immlé-low | immlé-hig J

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Subtracts the contents of the 8- or 16-bit immediate
data specified by the second operand and the con-
tents of the carry flag from the 8- or 16-bit
register specified by the first operand, and stores
the result in the register specified by the first
operand.

reg + reg - imm - CY

7) Flag operation

12-75

(5) Immediate data from memory to memory

1)

2;

3)

4)

5)

6)

Description format
SUBC mem; imm

Instruction format
7 0 7 & 5 3 2 b]

1[1 00000SWimd 011 menj

T 0o 7 0
r* (disp-low) } (disp-high)‘gg
7 o7 0
[imm8 or imml6-1ow imml6-high J

Number of bytes
3/4/5/6

Number of clocks

When W=0, 18
When W=1, 26: uyPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Subtracts the contents of the 8- or 1l6-bit immediate
data specified by the second operand and the contents
of the carry flag from the 8- or 16-bit memory
contents addressed by the first operand, and stores
the result in the memory location addressed by the
first operand.

(mem) « (mem) - imm - CY

12-76

7)

Flag operation

12-77

(6)

1)

2)

3)

4)

5)

6)

Immediate data from accumulator to accumulator

Description format
SUBC acc, imm

Instruction format

Number of bytes
2/3

Number of clocks
4

Number. of transfers of 16-bit words

None

Function

Subtracts the 8- or 16-bit immediate data specified

by the second operand and the contents of the carry

flag from the accumulator
the first operand,

(AL or AW) specified by
and stores the result in the

accumulator specified by the first operand.

imm8 - CY
immlé - CY

When W=0
When w=1

AL « AL -
AW « AW -

7) Flag operation

12-78

12.8 BCD Operation Instructions

12.8.1 ADD4S (Add Nibble String)

1)

2)

3)

4)

5)

€)

Description format
ADD4S [DSl-spec:ldst-string, [seg-spec:lsrc-string
ADD4S (no operand)

Instruction format

A 3

6 S 4 3 2 1 0 L 2 1 0
T 1 1 1 1+ 1 1+t 11 1177
‘00001111100100000J

Number of bytes
2

Number of clocks
19 x n + 7 n: one-half the number of BCD digits

Number of transfers of 16-bit words

None

Function

BCD string (IY,CL) « BCD string (I¥,CL) + BCD string
(IX,CL)

Adds the packed BCD string addressed by the IX index
register to the packed BCD string addressed by the IY
index register, and stores the result in the string
addressed by the IY register. The length of the string
(number of BCD digits) is specified by the CL register
(if the contents of the CL register is 4, 4 digits),
and can contain from 1 to 255 digits.

When the number of digits is odd, the lower 4 bits of
the most significant byte becomes the most significant
digit of the BCD. Due to the result of this
instruction, the contents of the upper 4 bits of the
most significant byte are not assured.

12-79

The destination string must always be located within
the segment specified by the DS1 segment register, and
the segment override is prohibited.

The default segment register for the source string is
DS0, and segment override is possible. The source
string may be located within the segment specified by
any (optional) segment register.

The format for the packed BCD string is shown on the
next paga.

IX
Byte offset Iy
+m +1 +o0 |
Memoxy 1 T
Digit offset +CL +4 +3 +2 +1 0
7) Flag operation
T T T T T
\Y S Z AC P cy
X X U U X

12-80

12.8.2 SUB4S (Subtract Nibble String)

1)

2)

3)

4)

5)

6)

Description format
SUB4S [DSl-spec:]dst-string, iseg-spec:]src-string
SUB4S (no operand)

Instruction format
7 07 0

[00001111100100010J

Number of bytes
2

Number of clocks
19 x n + 7 n: one-half the number of BCD digits

Number of transfers of 16-bit words

None

Function

BCD string (IY,CL) « BCD string (IY¥,CL) - BCD string
(IX, CL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the 1Y index register, and stores the result in the
string addressed by the IY register.

The length of the string (number of BCD digits) is
specified by the CL register (if the contents of the
CL register is d, 4 digits), and can contain from 1 to
255 digits.

When the number of digits is odd, the lower 4 bits of
the most significant byte becomes the most significant
digit of the BCD. The contents of the upper 4 bits of
the most significant byte are not assured due to the
result of the operation.

12-81

The destinaticn string must alwavs be located within
the segment specified by the DS1 segment register, and
the segment override is prohibited.

The default segment register for the source string is
Ds0, and segment override is possible. The source
string may be located within the segment specified by
any (optional) segment register.

The format for the packed BCD string is shown on the
next page.

IX
Byte offset Y
+m +1 +0 1
Memory | I i | ‘
H e ' '
Digit offset +CL +4 +3 +2 +1 0

7) Flag operation

v s z ac P cy |
| X U X U U X

12-82

12.8.3 CMP4S (Compare Nibble String)

1)

2)

3)

4)

5)

6)

Description format
CMP4S [DSl-spec:]dst-string, [seg-spec:]src-string
CMP4S (no operand)

Instruction format
7 07 0

©000111100100110

Number of bytes
2

Number of clocks
19 x n + 7 n: one-half the number of BCD digits

Number of transfers of 16-bit words

None

Function

BCD string (IY,CL) - BCD string (IX,CL)

Subtracts the packed BCD string addressed by the IX

index register from the packed BCD string addressed by

the IY index register. The result is not stored and

only the flags are affected. The length of the string

(number of BCD digits) is specified by the CL register

(if the contents of the CL register is d, 4 digits),

and can contain from 1 to 255 digits,

When the number of digits is odd, the lower 4 bits of

the most significant byte becomes the most significant

digit of the BCD.

The destination string must always be located within

the segment specified by the DS1 segment register, and

the segment override is prohibited. The default segment

register for the source string is DS0 and segment

override is possible.

The source string may be located within the segment

specified by any (optional) segment register.

The format for the packed BCD string is shown below.
12-83

1Y
Byte offset ‘m i 4o l
Memory : : g i T R }
Digit cffset +CL. +4 +3 +2 +1 0
7) Flag operation

12-84

12.8.4 ROL4 (Rotate Left Nibble)

(1) 8-bit register

1)

2)

3)

4)

5)

6)

7)

Description format
ROL4 reg8

Instruction format
7 ¢ 7 0o 7 3 2 [}

- il T
[0000111110010100011000 reg

Number of bytes
3

Number of clocks
25

Number of transfers of 1l€;-bit words

None

Function

reg8

Higher| Lower
4bits|4bits

ALL [+ ——

Treats the byte d.ata of the 8-bit register specified
by the operand a.s a two-digit BCD and uses the lower 4
bits of the AL register (ALj) to rotate that data one
digit to the 1left.

Due to the re sult of this instruction, the contents of
the upper 4 'pits of the AL register are not assured.

Flag operat:ion

None

12-85

(2) 8-bit memory

1) Description format
ROL4 mem8

2) Instruction format
7 0 7 0 7 6 5 2 2 0
oooo1111i00101ooogmodooomem}

1 [0

‘ {disp-low) { (disp-high) J

3) Number of bytes
3/4/5

4) Number of clocks
28

5) Number of transfers of 16-bit words

None

6) Function
(mem8)

Higher| Lower
ALy M 4bits|dbits

Treats the byte data of the 8-bit memory location
addressed by the operand as two-digit BCD and uses

the lower 4 bits of the AL register (ALp) to rotate
that data one digit to the left.

Due to the result of this instruction, the contents of
the upper 4 bits of the AL register are not assured.

7) Flag operation

None

12-86

12.8.5 ROR4 (Rotate Right Nibble)
(1) 8-bit register

1) Description format
ROR4 reg8

2) Instruction format
7 001 07 3 2 0

Fooo1111’i00101010‘;11000 rei‘

3) Number of bytes
3

4) Number of clocks
29

5) Number of transfers of 16-bit words

None

6) Function

reg8

Higher|Lower
ALy 4bits|4bits

Treats the byte data of the 8-bit register specified
by the operand as two-digit BCD and uses the lower 4
bits of the AL register (ALp) to rotate that data one
digit to the right.

the contents of

e
the upper 4 bits of the AL register are not assured.

7) Flag operation

None

12-87

(2)

1)

2)

3)

4)

5)

6)

7)

8-bit memory

Description format
ROR4 mem8

Instruction format
7 07 07 6 5 3 2 0

(@ 0001111/00101010[md 000 mem |

7 07 0

{ (disp-low) | (disp-high)]

Number of bytes
3/4/5

Number of clocks
33

Number of transfers of 16-bit words

Function
(mem8)

Higher| Lower
ALy 4bits |4bits

Treats the byte data of the 8-bit memory location
addressed by the operand as two-digit BCD and uses
the lower 4 bits of the AL register (ALp) to

rotate that data one digit to the right.

Due to the result of this instruction, the contents
of the upper 4 bits of the AL register are not

....... A
asSsSurcae.

Flag operation

None

12-88

12.9 Increment/Decrement Instruction
12.9.1 INC (Increment)
(1) 8-bit register

1) Description format
INC reg8

2) Instruction format
1 07 6 5 3 2 0

r1111111011‘ooo rng

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Increments (+1) the contents of the 8-bit register
specified by the operand.

reg8 « reg8 + 1

7) Flag operation

T T T T T

12-89

(2) Memory

1) Description format
INC mem

2) Instruction format

7 07 65 3 2 0
[1 111111 Wmd 000 mem |

7 07 0
l (disp-low) i (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When W=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: pPD70116 even addresses

5) Number of transfers of 16-bit words

2

6) Function
Increments (+1) the contents of the 8- or 16-bit
memory contents specified by the operand.

(mem) <« (mem) +1

7) Flag operation

T T T T T

AC P (%4

12-90

(3)

1)

2)

3)

4)

5)

6)

7)

16-bit register

Description format
INC reglé

Instruction format
7 3 2 0

{0 100 OK r{EJ ' : \

Number of bytes
1

Number of clocks
2

Number of transfers of l1l6=-bit words

None

Function

Increments (+1) the contents of the 16-bit register
specified by the operand.

reglé « regl6 + 1

Flag operation

12-91

12.9.2 DEC (Decrement)

(1) 8-bit register

1 Description format
DEC reg8

2 Instruction format
1 0 7 6 S 3 2 0

T T T 1
1111111011001 rng

3 Number of bytes
2

4 Number of clocks
2

5 Number of transfers of 16-bit words

None

6 Function
Decrements (-1) the contents of the 8-bit register
specified by the operand.

reg8 « reg8 -1

7 Flag operation

12-92

(2) Memory

1) Description format
DEC mem

2) Instruction format
7 07 6 5 3 2 0

] T T
IIllllllW’lmodOOl meml

7 017 Q

[(disp~-low) l (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks

When w=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Decrements (=-1) the 8- or 16-bit memory contents
addressed by the operand.

(mem) « (mem) = 1

7) Flag operation

2 AC P cY

12-93

(3) lé-bit register

1) Description format
DEC reglé6

2) Instruction format
3 2 o

7
EO 100 1' reg E

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Decrements (=1) the contents of the 16-bit register

specified by the operand.

reglé « regl6 - 1

7) Flag operation

T T T T T
AC P Cy

12-94

12.10 Multiplication Instructions

12.10.1 MULU (Multiply Unsigned)

(1) 8-bit register

1) Description format
MULU reg8

2) Instruction format
7 07 6 5 3 2 0

i 1 1
11110110{11100 reg|

3) Number of bytes
2

4) Number of clocks
21 or 22 (according to data)

5) Number of transfers of 16-bit words

None

6) Function
Performs unsigned multiplication of the contents of
the AL register and the contents of the 8-bit register
specified by the operand, and stores the word
result in the AL and AH registers. When the upper half
(AH) of the result is not 0, the carry and overflow

flags are set.
AW « AW x reg8

When AH=0 CY « 0, V « 0
When AH#0 CY « 1, V « 1

7) Flag operation

12-95

(2)

1)

2)

3)

4)

5)

6)

7)

8-bit memory

Description format
MULU mem8

Instruction format
7 07 6 5 3 2 0

T 1
ll 11101 10imod 10 0 mem J

T 0.7 0

[(disp-low) | (disp-high)]

Number of bytes
2/3/4

Number of clocks
27 or 28 (according to data)

Number of transfers of 16-bit words
1

Function

Performs unsigned multiplication of the contents of
the AL register and the 8-bit memory contents
addressed by the operand, and stores the word
result in the AL and AH registers. When the upper
half (AH) of the result is not 0, the carry and
overflow flags are set. The AH register is the
expansion register.

AW « AL x (mem8)
When AH=0 CY « 0, V « O

When AH%0 CY « 1, V « 1

Flag operation

12-96

(3)

1)

2)

3)

4)

5)

6)

16-bit register

Description format
MULU reglé

Instruction format
07 6 3 3 2 0

!-1111011111;100‘reg]

Number of bytes
2

Number of clocks
29 or 30 (according to data)

Number of transfers of 16-bit words

None

Function

Performs unsigned multiplication of the contents

of the AW register and the contents of the 16-bit
register specified by the operand, and stores the
double-word result in the AW and DW registers. When
the upper half (DW) of the result is not 0, the carry
and overflow flags are set, The DW register is the

expansion register.
DW, AW « AW x reglé
When DW=0 CY « 0, V « O

When DW#0 CY « 1, V « 1

- PP U T
riag operacion

AC P Ccy

<
n
~N

12-97

(4) 1l6-bit memory

1) Description format
MULU memlé

2) Instruction format

7 0765 32 o
|11110111jmod'100'mem{
—

7 07 0
{ (disp-low) (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks

39 or 40: uPD70108
uPD70116 odd addresses
35 or 36: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Performs unsigned multiplication of the contents
of the AW register and the 16-bit memory contents
addressed by the operand, and stores the double-word
result in the AW and DW registers. When the upper half
(DW) of the result is not 0, the carry and overflow
flags are set. The DW register is the expansion

register.
DW, AW « AW x (memlé6)

When DW=0 CY « 0, V « 0
When DW20 CY « 1, V « 1

12-98

7) Flag operation

12-99

12.10.2 MUL (Multiply Signed)

(1)

1)

3)

4)

5)

6)

8-bit register

Description format
MUL reg8

Instruction format
7 0 7 6 5 3 2 0

;illlOllOillIlOl)reg

Number of bytes
2

Number of clocks
33 to 39 (according to data)

Number of transfers of 16-bit words

None

Function

Performs signed multiplication of the contents of

the AL register and the contents of the 8-bit register
specified by the operand, and stores the double-length
result in the AL and AH registers. When the upper half
(AH) of the result is not the sign extension of the
lower half (AL), the carry and overflow flags are set,
The AH register is the expansion register,

AW « AL x reg8
When AH=sign extension of AL CY « 0, V « O
When AH#sign extension of AH CY « 1, V « 1

7) Flag operation

12-100

(2) 8-bit memory

1)

2)

3)

4)

S)

6)

7)

Description format
MUL mem8

Instruction format
7 07T 6 5 3 2 0

[11110110!m0dl101lmem!

7 [0

| (disp-low) ! (disp-high)]

Number of bytes
2/3/4

Number of clocks
39 to 45 (according to data)

Number of transfers of 16-bit words

None

Function

Performs signed multiplication of the contents of the
AL register and the 8-bit memory contents addressed

by the operand, and stores the double-length result in
the AL and AH registers. When the upper half (AH) of
the result is not the sign extension of the lower

half (AL), the carry and overflow flags are set. The
AH register is the expansion register,

AW « AL x (mem8)
When AH=sign extension of AL CY « 0, V « O
When AH#sign extension of AH CY « 1, V « 1

Flag operation

12-101

(3)

1)

3)

4)

5)

6)

7)

16=-bit register

Description format

MUL reglé

Instruction format
7 0 7 6 5 3 2 [}

{1 1110111/11101 regAJ

Number of bytes
2

Number of clocks
41 to 47 (according to data)

Number of transfers of 16-bit words

None

Function

Performs signed multiplication of the contents of
the AW register and the contents of the 16-bit
register specified by the operand, and stores the
double-word result in the AW and DW registers. When
the upper half (DW) of the result is not the sign
extension of the lower half (AW), the carry and
overflow flags are set. The DW register is the
expansion register.

DW, AW « AW x reglé6
When DW=sign extension of AW CY « 0, V « O
When DW#sign extension of AH CY « 1, V « 1

Flag operation

T T T T T
\4 S Z AC P Cy

12-102

(4)

1)

2)

3)

4)

5)

6)

l6-bit memory

Description format
MUL memlé6
Instruction format
7 07 6 5 3 2 0
1111011llmod'101'memJ
7 07 [}
{47 (disp-low) I (disp-high) J
Number of bytes
2/3/4
Number of clocks
51 to 57: uPD70108
uPD70116 odd addresses
47 to 53: uPD70116 even addresses
Number of transfers of 16-bit words
1
Function

Performs signed multiplication of the contents of

the AW register and the 16-bit memory contents
addressed by the operand, and stores the double-word
result in the AW and DW register. When the upper half
(DW) of the result is not the sign extension of the
lower half (AW), the carry and overflow flags are
set. The DW register is the expansion register.

DW, AW « AW x (memlé6)

When DW=sign extension of AW CY « 0, V « O
When DW#sign extension of AW CY « 1, V « 1

12-103

7) Flag operation

12-104

(5) 16-bit register x 8-bit immediate data to 16-bit register

1) Description format
MUL regl6,regl6, imm8
MUL regl6,imm8

2) Instruction format
7 07T 6 s 3 2 0

-1
o

01101011;11 reglreg imm8

3) Number of bytes
3

4) Number of clocks
28 to 34 (according to data)

5) Number of transfers of 16-bit words

None

6) Function
reglé « regl6 x imm8
Product < 16 bits: CY « 0, V « O
Product > 16 bits: CY « 1, V « 1

Performs signed multiplication of the contents of

the 16-bit register specified by the second operand
(when a two-operand description, by the first operand)
and the 8-bit immediate data specified by the third
operand (when a two-operand description, by the second
operand), and stores the result in the 16-bit register

specified by the first operand.

When the source register and the destination register

can be the same, a two-operand description is feasible.

12-105

7) Flag operation

v

T

S

T

X

u

12-106

(6) 16-bit memory x 8-bit immediate data to 16-bit register

1) Description format
MUL regl6,meml6, imm8

2) Instruction format

7 075 5 3 2 01 0
[E 110101 limod‘ reg mem 1 (disp-low) i
7 07 0
| Cdisp-nigh) | imms8 |
3) Number of bytes
3/4/5

4) Number of clocks
38 to 44: uPD70108
uPD70116 odd addresses
34 to 40: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
reglé <« (meml6) x imm8
If the product < 16 bits: CY « 0, V « O
If the product > 16 bits: CY « 1, V « 1

Performs signed multiplication of the 16-bit memory
contents addressed by the second operand and the
8-bit immediate data specified by the third operand,
and stores the result in the 16-bit register

specified by the first operand.

7) Flag operation

12-107

(7) 16-bit register x 16-bit immediate data to 16-bit register

1)

2)

3)

4)

5)

6)

Description format
MUL regl6,regl6,immlé
MUL regl6,immlé

Instruction format
7 07 6 5 3 2 0

0110100111 reg reg |

7 o7 0

‘ imml6- low | immlé-high l

Number of bytes
4

Number of clocks

36 to 42 (according to data)

Number of transfers of l6-bit words

None

Function

regl6 « reglé x immlé

If product < 16 bits: CY « 0, V « 0
If product > 16 bits: CY « 1, V « 1

Performs signed multiplication of the contents of

the 16-bit register specified by the second operand
(or by the first operand, in the case of a
two-operand description) and the 16-bit immediate
data specified by the third (second) operand and
stores the result in the 16-bit register specified

by the first operand.

When the source register and the destination register

can be the same, a two-operand description is possible.

12-108

(8) 16-bit memory x 16-bit immediate data to 16-bit register

1)

2)

3)

5)

6)

Description format
MUL regl6,memlé6, immlé6

Instruction format

7 07 6 5 3 2 b}
LO 110100 1imod ‘ reg ‘ mem j
7 07 2
I (disp-low) % (disp-high) I
7 07 0
r imml6-low | imml6-high J

Number of bytes
4/5/6

Number of clocks

46 to 52: uPD70108
uPD70116 odd addresses
42 to 48: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

reglé <« (meml6) x immlé

If product < 16 bits: CY « 0, V « O
If product > 16 bits: CY « 1, V « 1

Performs signed multiplication of the 16-bit memory
contents specified by the second operand and the
16~-bit immediate data specified by the third operand,
and stores the result in the 16-bit register spec-

ified by the first operand.

12-109

7) Flag operation

12-110

12,11 Division Instructions
12.11.1 DIVU (Divide Unsigned)
(1) 8-bit register

1) Description format
DIVU reg8

2) Instruction format
7 07 3 2 [}

I11110110'Lll.110 Teg

3) Number of bytes
2

4) Number of clocks
19

5) Number of transfers of 16-bit words

None

6) Function

temp « AW

When temp + reg8 < FFH,
AH + temp % reg$8
AL + temp + reg8

When temp ¢ reg8 > FFH,
(SP-1, SP-2) « PSW
(SP-3, SP-4) « PS
(sp-5, SP-6) « PC
SP « SP - 6
IE « O
BRK « 0
PS « (003H, 002H)
PC « (001H,- 000H)

12-111

Nivides (by unsigned division) the contents of the aw
16-bit register by the contents of the 8-bit register
specified by the operand. The resulting quotient is
stored in the AL register, and any remainder is
stored in the AH register.
When the quotient exceeds FFH, that is the capacity of
the AL destination register, the vector 0 interrupt is
generated. When this occurs, the quotient and
remainder become undefined. This particularly occurs
when divided by 0. The fractional gquotient is rounded
off.

7) Flag operation

v S Z AC P CY
U J U U U 1]

12-112

(2) 8-bit memory

1) Description format
DIVU mem8

2) Instruction format
07 6 5 3 2 G

1
1111011 O!mod 1 1 0 mem j

07 [J

l (disp=low) (disp-high) }

3) Number of bytes
2/3/4

4) Number of clocks
25

5) Number of transfers of 16-bit words

None

6) Function

temp <« AW
When temp ¢ (mem8) < FFH,
AH - temp % (mem8)

AL - temp % (mem8)

»

When temp + (mem8) > FFH,
(SP-1, SP-2) « PSW
(SP-3, SP-4) = PS
(SP=-5, SP-6) = PC
SP« SP - 6
IE= 0
BRK « 0
PS « (003H, 002H)

PC « (001H, 0O0OH)

Divides (with unsigned division) the contents of the
AW 16-bit register by the 8-bit memory contents specified

12-113

7)

by the operand. The quotient is stored in the AL
register and the remainder, if any, is stored in the
AH register.

When the guotient exceeds FFH, that is the capacity of
the AL destination register, the vector 0 interrupt is
generated. When this occurs, the quotient and
remainder become undefined. This particularly occurs
when divided by 0. The fractional gquotient is rounded
off.

Flag operation

12-114

(3) 16-bit register

1) Description format
DIVU reglé

2) Instruction format

7 07 3 2 0

[11110111]’11110'rngi

3) Number of bytes
2

4) Number of clocks
25

5) Number of transfers of 16-bit words

None

6) Function

temp « DW, AW
When temp + reglé < FFFFH,
DW ¢ temp % regl6
AW €« temp 7 reglé
When temp 7 regl6é > FFFFH,
(SP-1, SP-2) « PSW
(sp-3, SP-4) « PS
(SpP-5, SP-6) =« PC
SP« SP - 6
IE« O
BRK « 0
PS « (003H, 002H)
PC - (001H, OOOCH)

Divides (unsigned division) the contents of the DW
and AW 16-bit register pair by the contents of the
16-bit register specified by the operand. The
quotient is stored in the AW register, and the

remainder, if any, is

12-115

7)

stored in the DW register. When the quotient exceeds
FFFFH, that is the capacity of the AW destination
register, the vector 0 interrupt is generated, and the
quotient and remainder become undefined. This occurs
particularly when divided by 0. A fractional quotient

is rounded off.

Flag operation

12-116

(4) 16-bit memory

1) Description format
DIVU memlé6

2) Instruction format
7 07 6 5 3 2 0

FlllOlllimodllOlmeml

7 0 7 0

(7 (disp=-low) s (disp-high) l

3) Number of bytes
2/3/4

4) Number of clocks

35: uPD70108
uPD70116 odd addresses
31: uyPD70116 even addresses

5) Number of transfers of l6-bit words
1

6) Function

temp « DW, AW

When temp ¥ (memlé) < FFFFH,
DW « temp % (memlé6)

AW « temp + (memlé6)

When temp + (meml6) > FFFFH,
(SP-1, SP-2) « PSW
(SpP-3, SP-4) <« PS
(spP-5, SP-6) <« PC
SP « SP-6
IE« 0
BRK <« 0
PS « (003H, 002H)

PC « (001H, 000H)

12-117

Divides (unsigned division) the contents of the DW and
AW 16-bit register pair by the 1l6-bit memor; contents
specified by the operand. The quotient is stored in
the AW register, while the remainder, if any, is stored
in the DW register.

When the quotient exceeds FFFFH, that is the capacity
of the AW destination register, the vector 0 interrupt
is generated and the quotient and remainder become
undefined. This occurs particularly when divided by 0.
A fractional gquotient is rounded off.

7) Flag operation

12-118

12.11.2 DIV (Divide Signed)
(1) 8-bit register

1) Description format
DIV reg8

2) Instruction format
7 [3 2 (i

T B
111101 10/11111 regl

3) Number of bytes
2

4) Number of clocks
29 to 34 (according to data)

5) Number of transfers of 16-bit words
None

6) Function

temp € AW
When temp + reg8 > 0 and temp

reg8 g 7FH

or

temp + reg8 < 0 and temp + reg8 > 0-7FH-1
AH <« temp % regs8

)

AL « temp + reg8
When temp + reg8 > 0 and temp + reg8 > 7FH

or

temp + reg8 < 0 and temp + reg8 < 0-7FH-1
quotient and remainder are undefined
(SP-1, SP-2) <« PSW
(SP-3, SP-4) « PS
(SP-5, SP-6) <« PC
SP « SP - 6
IE « 0

BRK € 0

12-119

7)

PS « (003H, 002H)
PC « (001H, 000H)

Divides (signed division) the contents of the AW
16-bit register by the contents of the 8-bit register
specified by the operand. The quotient is stored

in the AL 8-bit register, while the remainder, if any,
is stored in the AH register. The maximum value of a
positive quotient is +127 (7FH), while the minimum
value of a negative quotient is =127 (81lH). When a
guotient is greater than the maximum value or less
than the minimum value, the quotient and remainder
become undefined, and the vector 0 interrupt is
generated.

This occurs particularly when divided by 0. A.
fractional quotient is rounded off. The remainder will

have the same sign as the dividend.

Flag operation

12-120

(2)

1)

2)

3)

4)

5)

6)

8-bit memory

Description format
DIV mem8

Instruction format
7 07T 6 3 3 2

0

(11110110'm0d111 meml

7 07

0

l (disp-low) l (disp-high)

|

Number of bytes
2/3/4

Number of clocks
35 to 40 (according to data)

Number of transfers of 16-bit words

None

Function

temp <« AW

When temp * (mem8) > 0 and temp

or

.

temp + (mem8) < 0 and temp

AH « temp % (mem8)
AL « temp + (mem8)

When temp ¢ (mem8) > 0 and temp

or

temp + (mem8) < 0 and temp

.

(mem8) <

(mem8) >

(mem8) >

(mem8) <

7FH

0-7FH-1

7FH

0-7FH-1

quotient and remainder are undefined

(SP-1, SP-2) = PSW
(SP-3, SP-4) « PS
(SP-5, SP-6) = PC
SP «'SP - 6

IE « 0

BRK = 0

12-121

7)

PS « (003H, 002H)
PC « (001lH, 000H)

Divides (signed division) the contents of the AW
16-bit register by the contents of the 8-bit register
specified by the operand. The quotient is stored

in the AL 8-bit register, while the remainder, if any,
is stored in the AH register. The maximum value of a
positive quotient is +127 (7FH), while the minimum
value of a negative quotient is -127 (81H). When a
guotient is greater than the maximum value or less
than the minimum value, the quotient and remainder
become undefined, and the vector 0 interrupt is
generated.

This occurs particularly when divided by 0. A
fractional quotient is rounded off. The remainder will

have the same sign as the dividend.

Flag operation

12-122

(3) 16-bit register

1) Description format
DIV reglé

2) Instruction format
7 [3 2 0

1111011111111 reg

3) Number of bytes
2

4) Number of clocks
38 to 43 (according to the data)

5) Number of transfers of 16-bit words
1

6) Function

temp <« DW, AW
When temp ¥ reglé > 0 and temp

reglé < 7FFFH

or

temp + reglé < 0 and temp
DW « temp % reglé

AW <« temp %+ reglé

reglé > 0-7FFFH-1

When temp %+ reglé > 0 and temp %+ regl6é > 7FFFH
or
temp + reglé < 0 and temp + reglé < 0-7FFFH-1
quotient and remainder are undefined
(SP-1, SP-2) <« PSW
(SP-3, SP-4) < PS
(SP-5, SP-6) <« PC
SP + SP - 6
IE<«< 0
BRK « 0
PS « (003H, 002H)
PC <« (001H, O0O0O0H)

12-123

Divides (signed division) the contents of the DW and AW
l6-bit register pair by the contents of the 1l6-bit
register specified by the operand. The guotient is stored
in the AW 16-bit register, while the remainder, if any,
is stored in the DW register. The maximum value of a
positive quotient is +32,767 (7FFFH), while the minimum
value of a negative quotient is =32,767 (8001H). When the
quotient is greater than the maximum value or less

than the minimum value, the quotient and remainder

become undefined, and the vector 0 interrupt is
generated.

This occurs particularly when divided by 0. A

fractional quotient is rounded off. The remainder will
have the same sign as the dividend.

7) Flag operation

12-124

(4)

1)

3)

4)

5)

6)

16-bit memory

Description format
DIV meml6

Instruction format

6 5 4 3 2 1 0 7 6 5 4 3 2 1

.
T T T

2
T T T T T T
ll 1110111 ‘ mod 1 1 1

0
7 3 5 4 3 2 1 0 ? 6 5 4 3 [

" mem |
2 1

—t—T—T—T—T— et —
L, (disp-low) l (disp-high

I

Number of bytes
2/3/ 4

Number of clocks
48 to 53: uPD70108

uPD70116 odd addresses
44 to 49: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

temp <« DW, AW
When temp % (meml6) > 0 and temp =<
or
temp + (meml6) < 0 and temp %
DW « temp % (memlé)

AW <« temp + (memlé6)

When temp %+ (memlé) > 0 and temp +

or

temp + (meml6) < 0 and temp 2

quotient and remainder are
(SP-1, SP-2) « PSW

(SP-3, SP-4) « PS

(SP-5, SP-6) <« PC

SP « SP - 6

IE « 0

BRK <« 0

PS <« (003H, 002H)

PC « (001H, OOOH)

12-125

(memlé) <

(meml6) >

(meml6) >

(meml6) <

undefined

7FFFH

0-7FFFH-1

7FFFH

0-7FFFH-1

Divides (signed division) the contents of the DW and

the AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quctient is stored
in the AW 16-bit register, while the remainder, if any

is stored in the DW register. The maximum value of a
positive quotient is +32,767 (7FFFH), while the minimum
value of a negative quotient is -32,767 (8001H). When
guotient is greater than the maximum value or less

than the minimum value, the quotient and remainder

become undefined, and the vector 0 interrupt is
generated.

This occurs particularly when divided by 0. A

fractional quotient is rounded off. The remainder will

have the same sign as the dividend.

7) Flag operation

12-126

12.12 BCD Adjust Instructions

12.12.1 ADJBA (Adjust Byte Add)

1) Description format
ADJBA (no operand)

2) Instruction format
7 0

[b 0110111

3) Number of bytes
1

4) Number of clocks
3

5) Number of transfers of 16-bit words

None

6) Function
Adjusts the result of unpacked decimal addition
stored in the AL register into a single unpacked deci-
mal number. The higher 4 bits become zero.

When AL A OFH >9 or AC=1
AL « AL + 6
AH « AH + 1
AC « 1
CY « AC
AL « AL A OFH

7) Flag operation

v S 2 AC P CY
U U U X U X

8) Description example
ADJBA
12-127

12.12.2 ADJ4A (Adjust Nibble Aadd)

1) Description format
ADJ4A (no operand)

2) Instruction format

7 0
001001 1411

3) Number of bytes
1

4) Number of clocks
3

5) Number of transfers of 16-bit words
None

6) Function
Adjusts the result of packed decimal addition stored
in the AL register into a single packed decimal

number.

When AL A OFH >9 or AC=1
AL « AL + 6
CY « CY V AC
AC « 1
When AL >9FH or CY=1
AL « AL + 60H
CY « 1

7) Flag operation

8) Description example
ADJ4A

12-128

12.12.3 ADJBS (Adjust Byte Subtract)

1) Description format
ADJBS (no operand)

2) Instruction format
7 0

(870 1 1'111 11

3) Number of bytes
1

4) Number of clocks
7

5) Number of transfers of 16-bit words

None

6) Function
Adjusts the result of unpacked decimal subtraction
stored in the AL register into a single unpacked deci-
mal number. The higher 4 bits become zero.

When AL A OFH >9 or AC=1
AL « AL - 6
AH « AH - 1
AC « 1
CY « AC
AL « AL A OFH

7) Flag operation

8) Description example
ADJBS

12-129

12.12.4 ADJ4S (Adjust Nibble Subtract)

1) Description format
ADJ4S (no operand)

2) Instruction format

7 0
IO 010111 1,

3) Number of bytes
1

4) Number of clocks
7

5) Number of transfers of 16-bit words
None

6) Function
Adjusts the result of packed decimal subtraction stored

in the AL register into a single packed decimal number.

When AL A OFH >9 or AC=1
AL « AL - 6
CY « AC V CY
AC « 1
When AL >9FH or CY=1
AL « AL - 60H
CY « 1

7) Flag operation

8) Description example
ADJ4S

12-130

12.13

12.13.

1)

2)

3)

4)

5)

6)

7)

8)

Data Conversion Instructions

1 CVTBD (Convert Binary to Decimal)

Description format
CVTBD (no operand)

Instruction format
7 0o 7 0

1101¢100/00001010

Number of bytes
2

Number of clocks
15

Number of transfers of 16-bit words

None

Function
AH « AL % OAH
AL « AL % OAH

Converts the binary 8-bit value in the AL register into
a two-digit unpacked decimal number.

The quotient of AL divided by 10 is stored in the AH
register. The remainder of this operation, if any, is
then stored in the AL register.

Flag operation

Y T 7 T T

AC P Ccy

Description example
CVTBD

12-131

12.13.2 CVTDB (Convert Decimal to Binary)

1) Description format
CVTDB (no operand)

2) Instruction format
7 0 7 0

1101010100001 010

3

~

Number of bytes
2

4) Number of clocks
7

5) Number of transﬁers of 16-bit words
None

6) Function
AL « AH x OAH + AL
AH « O

Converts a two-digit unpacked decimal number in the AH and AL
registers into a single 16-bit binary number.

The value in the AH is multiplied by 10. The product

is added to the contents of the AL register and the

result is stored in AL. AH becomes 0.

7) Flag operation

\Y% S Z AC P Ccy
U X X U X U

8

~

Description example
CVTDB

12-132

12.13.3 CVTBW (Convert Byte to Word)

1) Description format
CVTBW (no operand)

2) Instruction format
1 0

[1 0011000

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Expands the sign of the byte in the AL register to the
AH register. This is effective to derive a double-length
(word) dividend from a byte before byte division is

performed.

when AL < 80H AH « 0
when AL > 80H AH « FFH

7) Flag operation
None

8) Description example
CVTBW

12-133

12.13.4 CVTWL (Convert wWord to Long Word)

1)

2)

3)

4)

5)

6)

7)

8)

Description format
CVTWL (no operand)

Instruction format
1 [
1001100 EJ

Number of bytes
1

Number of clocks
4 or 5 (according to data)

Number of transfers of 16-bit words

None

Function

Expands the sign of the word in the AW register to the

DW register. This is effective to derive a double-length

(double word) dividend from a word before word division is

performed.

when AW < 8000H DW « O
when AW > 8000H DW « FFFFH

Flag operation
None

Description example
CVTWL

12-134

12.14 Comparison Instructions

12.14.1 CMP (Compare)

(1) Register and register

1)

2)

3)

4)

5)

6)

7)

Description format

CMP regq,reg

Instruction format
7 07 6 5 3 2 0

i

T
0011101W11 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

Subtracts the contents of the 8- or 16-bit register
specified by the second operand from the contents of
the 8- or 16-bit register specified by the first
operand. The result is not stored, only the flags are
affected.

reg - reg

Flag operation

12-135

(2) Memory and register

1)

4)

5)

6)

Description format
CMP mem,reg

Instruction format
7 0 7 6 5 3 2 0

T
LOOIIIOOW‘mod reg

[0

7
L, (disp=-low) ((disp-high) 41

Number of bytes
2/3/4

Number of clocks
When w=0, 11
When wW=1, 15: uPD70108
wPD70116 odd addresses
11: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

Subtracts the contents of the 8- or 16-bit register
specified by the second operand from the 8- or 16-bit
memory contents addressed by the first operand. The
result is not stored, only the flags are affected.

(mem) - reg
Plaa oneration
Flag operation
T T T T 1
S 2 AC P CY
X X X X X

12-136

(3) Register and memory

1) Description format
CMP reg,mem

2) Instruction format

7 0 7 6 5 3 2 0
lO 011101 W‘[mod, reg ' mem |
7 07 0
L (disp-low) (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks

When wW=0, 11
When wW=1, 15: uPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Subtracts the 8- or 16-bit memory contents addressed by
the second operand from the contents of the 8- or
16-bit register specified by the first operand. The
result is not stored, only the flags are affected.

reg - (mem)

7) Flag operation

12-137

(4) Register and immediate data

1) Description format
CMP reg,imm

2) Instruction format
7 07 6 s 3 2 0

T T
[iOOOOOSWIlllIl reg]

7 0 7 [
LimnS or imls-lowl imml6-high l

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words
None

6) Function
Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or
16-bit register specified by the first operand. The

result is not stored, only the flags are affected.

reg - imm

7) Flag operation

T) I i T
v s z AC P cy
X X X X X X

12-138

(5) Memory and immediate data

1) Description format
CMP mem, imm

2) Instruction format
7 07 6 5 3 2 0

T T
Iloooooswlmodlll mem]

7 07 0
l (disp-low) | (disp-high) J

7T 07 0
l imm8 or imml6-low] imml6-high]

3) Number of bytes
3/4/5/6

4) Number of clocks

When w=0, 13
When w=1, 17: uPD70108
uPD70116 odd addresses
13: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
Subtracts the 8- or 16-bit immediate data specified by
second operand from the 8- or 16-bit memory contents
addressed by the first operand. The result is not
stored, only the flags are affected.

(mem) - imm

7) Flag operation

12-139

{6) Accumulator and immediate data

1) Cescription format

CMP acc, imm

2) Instruction format
7 007 007 0

[E 0 11110 W irm8or imml(i—lmwl imml6-high

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. The result is not

stored, only the flags are affected.

When W=0 AL - imm8
When W=1 AW - immlé6

7) Flag operation

12-140

12.15 Complement Operation Instructions

12.15.1 NOT (Not)

(1)

1)

2)

3)

4)

5)

6)

7)

Register

Description format

NOT reg

Instruction format

7 07 6 s 3 2 0
1] 1l

Li 11 1011W11010 reg J

Number of bytes

2

Number of clocks

2

Number of transfers of 16-bit words

None

Function

Inverts (by performing a one's complement) each
bit of the 8- or 16-bit register specified by the
operand and stores the result in the specified
register,

reg « reg

Flag operation

None

12-141

(2)

1)

2)

3)

4)

5)

6)

7)

Memory

Description format
NOT mem

Instruction format
7 07 6 5 3 2 0

[llllOllW‘mod|010‘ mem]

7T [

0
[(disp=-low) [(disp-high)J

Number of bytes
2/3/4

Number of clocks
When wW=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses

16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Inverts (by performing a one's complement) each

bit of the 8- or 16-bit memory location addressed by
the operand and stores the result in the addressed
memory location.

(mem) « (mem)

Flag operation

None

12-142

12.15.2 NEG (Negate)

(1) Register

1) Description format
NEG reg

2) Instruction format
7 07 6 5 3 2 0

T T
[1 11101 1W11011 reg

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words
None

6) Function
reg +« reg + 1

Takes the two's complement of the contents of the 8- or
16~-bit register specified by the operand.

7) Flag operation

1 ¥ T] T

\Y% S Z AC P CYy

X X X X X 1*

*: 0 if the contents of the register to be operated is 0.

12-143

(2) Memory

1) Description format
NEG mem

2) Instruction format
7 07 6 5 32 0

T T
!1111011W[mod011 mem]

7 o7 0

[(disp-low) ’. (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When W=0, 16
When wW=1, 24: uPD70108
uPD70116 odd addresses

16: uyPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
(mem) <« (mem) + 1

Takes the two's complement of the 8- or 16-bit memory

contents addressed by the operand.

7) Flag operation

\ S Z AC P CY

X X X X X 1

*: 0 if the contents of the memory to be operated is 0.

12-144

12.16 Logical Operation Instructions

12.16.1 TEST (Test)

(1)

1)

2)

3)

4)

5)

6)

Register and register

Description format
TEST reg,reg

Instruction format
7 07 6 5 3 2 0

1000010W}11 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

ANDs the contents of the 8- or 16-bit register
specified by the first operand and the 8- or 16-bit
register specified by the second operand. The result
is not stored, only the flags are affected. The CY and
V flags are cleared, while the AC flag becomes unde-
fined.

reg A reg

7) Flag operation

AC P Cy

12-145

(2) Register and memory

1) Description format
TEST mem,reg or TEST reg,mem

2) Instruction format

7 0 78 5 3 2 0
[1 000010 WWmod' reg ‘ mem]
7 o7 0
(7 (disp-low) l (disp-high) AJ

3) Number of bytes
2/3/4

4) Number of clocks

When w=0, 10
When w=1, 14: uPD70108
uPD70116 odd addresses
10: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
ANDs the contents of the 8- or 16-bit register
specified by the second operand and the 8- or 16-bit
memory contents addressed by the first operand. The
result is not stored, only the flags are affected. The
CY flag and V flags are cleared, while the AC flag

becomes undefined.

(mem) A reg

7) Flag operation

N dan T T

AC P cCY

12-146

(3) Immediate data and register

1) Description format
TEST reg,imm

T T
[1111011w111ooo reg]

7 07 0

Fn’mS or immlG-loWl immlé-high]

3) Number of bytes
3/4

4) Number of clocks

4

5) Number of transfers of 16-bit words
None

6) Function
ANDs the contents of the 8- or 1l6-bit register
specified by the first operand and the 8- or 16-bit
data specified by the second operand. The
result is not stored, only the flags are affected. The
CY flag and V flags are cleared, while the AC flag
becomes undefined.

reg A imm

7) Flag operation

12-147

(4) lmmediate data and memory

1) Description format
TEST mem, imm

2) Instruction format

7 o 785 3 2 o

T T
ElllOllWlmodOOO memJ

ke ¢ 7 0
r (disp-1low) l (disp-high) J
7 07 0

[imm8 or inmlG-lowI imml16-high J

3) Number of bytes
3/4/5/6

4) Number of clocks

When w=0, 11
When W=1, 1S5: uPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data
specified by the second operand. The result is not
stored, only the flags are affected. The CY and V
flags are cleared, while the AC flag becomes unde-
f ined.

(mem) A imm

12-148

7) Flag operation

8) Description example

12-149

(5)

1)

2)

24)

wm

6)

7)

Immediate data and accumulator

Description format

TEST acc,imm

Instruction format

7 Q7 o7 o

]
10101 00 W ixm8 or immlé-low | imml6-high J

Number of bytes
2/3

Number of clocks

Number of transfers of 16-bit words
None

Function

ANDs the contents of the accumulator (AL or AW)
specified by the first operand and the 8- or 1l6-bit
immediate data specified by the second operand. The
result is not stored, conly the flags are affected. The

CY and V flags are cleared, while the AC flag becomes

undefined,

When W=0 AL A imm8
When W=1 AW A immlé

Flag operation

12-150

12.16.

2 AND (And)

(1) Register with register to register

1)

2)

3)

4)

5)

6)

7)

Description format
AND reg,reg

Instruction format
7 07 6 S 3 2 0

T

[0010001w11'reg reg]

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

ANDs the contents of the 8- or 16-bit register
specified by the first operand and the contents of the
8- or 16-bit register specified by the second operand,
and stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
AC flag becomes undefined.

reg « reg A reg

Flag operation

12-151

(2) Memory with register to memory

1) Description format
AND mem,reg

2) Instruction format
7 07 8 5 3 2

0

1
[0 010000 W]mod reg l memj
0

T 07
LA, (disp=low) l (diép-high) J

3) Number of bytes”
2/3/4

4) Number of clocks

wWhen wW=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
ANDs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit
register specified by the second operand, and stores
the result in the memory location addressed by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

(mem) <« (mem) A reg

7) Flag operation

T T T v |

12-152

(3) Register with memory to register

1) Description format

AND reg,mem

2) Instruction format
7 07 6 5 3 2

0
1] [l
lO 010001 WJmod reg mem]
0

7 07

[(disp-low) ! (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks

When W=0, 11
When W=1, 15: uPD70108
uPD70116 odd addresses

-
/

11: uP even addresses

oY

AT
Ull

5) Number of transfers of 16-bit words
1

6) Function
ANDs the contents of the 8- or 16-bit register
specified by the first operand and the 8- or 16-bit
memory contents addressed by the second operand, and
stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg « reg A (mem)

7) Flag operation

12-153

(4) Register with immediate data to register

1)

2)

4)

6)

Description format
AND reg, imm

Instructicn format
7 0 7 6 5 3 2 0

l T
[looo0o000wW11100 reg|
[

7 07 0

Lin’mB or imnlS-lowi imml6-high I

Number of bytes
3/4

Number of clocks
4

Number of transfers of 16-bit words

None

Function

ANDs the contents of the 8- or 16-bit register
specified by the first operand and the 8- or 16-bit
immediate data specified by the second operand, and
stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg « reg A imm

Flag operation

Z AC P Cy

12-154

(5)

1)

2)

3)

4)

5)

6)

Memory with immediate data to memory

Description format
AND mem,imm

Instruction format
7 07 6 5 3 2 0

lloooooow]modloo' mem.l

7 07 0

| (disp-low) f (disp-high) !

7 07

[
{ imm8 or im-n16~lowJ imml6-high [

Number of bytes
3/4/5/6

Number of clocks

When W=0, 18
When W=1, 26: uPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data
specified by the second operand, and stores the result
in the memory location addressed by the first operand.
The CY and v flags are cleared, while the AC flag
becomes undefined.

(mem) « (mem) A imm

12-155

7)

Flag operation

CY

12-156

(6) Accumulator with immediate data to accumulator

1) Description format
AND acc,imm

2) Instruction format

K 07 07 0

00100 1 0 W imm8 or imml6-low imml6-high

i

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
ANDs the contents of the accumulator (AL or AW)
specified by the first operand and the 8- or 16-bit
immediate data specified by the second operand, and
stores the result in the accumulator specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

When W=0 AL « AL A imm8
When W=1 AW « AW A immlé

7) Flag operation

AC P Cy

12-157

12.16

(1)

1)

2)

3)

4)

5)

7)

.3 OR (Or)

Register and register to register

Description format

OR reg,reg

Instruction format
7 07 8 5 3 2 0

T

[O 000101 “{1 1 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

ORs the contents of the 8- or 16-bit register
specified by the first operand and the contents of the
8~ or 16-bit register specified by the second operand,
and stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg « reg V reg

Flag operation
T T T T T
[\ S Z AC P cY
l 0 X 8] X 0 |

12-158

(2) Memory and register to memory

1) Description format
OR mem,reg

2) Instruction format

7 0 7 6 5 3 2 0
IO 000100 WlmodI reg I mem]
7 0o 7 0
l (disp=-low) ' (disp-high) I

3) Number of bytes
2/3/4

4) Number of clocks

When W=0, 16
When wW=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
ORs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit
register specified by the second operand, and stores
the result in the memory location addressed by the
first operand. The CY and V flags are cleared, while

the AC flag becomes undefined.

(mem) « (mem) V reg

7) Flag operation

T T T T T
AC P CY

12-159

(3) Register and memory to register

1)

2)

3)

4)

5)

6)

7)

Description format
OR reg,mem

Instruction format

7 0 7 6 5 3 2 0
[O 000101 Wlmod' reg l mem]

ki [0
[(disp-low) l (disp-high)]

Number of bytes
2/3/4

Number of clocks

When wW=0, 11
When w=1, 15: pPD70108
uPD70116 odd addresses
11: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

ORs the contents of the 8- or 16-bit register
specified by the first operand and the 8- or 16-bit
memory contents addressed by the second operand, and
stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg +« reg V (mem)

Flag operation

T T T T T
AC P Cy

12-160

(4) Register with immediate data to register

1) Description format
OR reg,imm

2) Instruction format
7 076 S 3 2 0

T T
]1000000w[11001 rng

7 07 0

[imm8 or imml16-low [imml16-high I

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of l6-bit words

6) Function
ORs the contents of the 8- or 1l6-bit register
specified by the first operand and the 8- or 1l6-bit
immediate data specified by the second operand, and
stores the result in the register specified by the
first operand. The CY flag and the V flag are cleared,
while the AC flag becomes undefined.

reg +« reg V imm

7) Flag operation

AC P CcY

12-161

(5) Memory with immediate data to memory

1)

2)

5)

6)

Description format
OR mem, imm

Instruction format
7 0 7 6 S 3 2 0

T T
Foooooow|mod001 memJ

7 07 0
[(disp-1low) l (disp-hign) I
7 07 0
[imB or immlé-low] imm16-high l

Number of bytes
3/4/5/6

Number of clocks

When w=0, 18
When w=1, 26: uPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

Number of transfers of 1l6-bit words
2

Function
ORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data

specified by the second operand, and stores the result

in +ha mamnryu laca+rinan addreacead hu +ha Five+r AnaranAd
in the memory location addressed by the first operand.
The CY and V flags are cleared, while the AC flag

becomes undefined.

(mem) « (mem) V imm

12-162

7) Flag operation

12-163

(6) Accumulator with immediate data to accumulator

1) Description format

OR acc,imm

2) Instruction format

7 07 0 7 0

0000110 WJ imm8 or immlG-low! imml6-high J

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words
None

6) Function
ORs the contents of the accumulator (AL or Aw)
specified by the first operand and the 8- or 1l6-bit
immediate data specified by the second operand, and
stores the result in the accumulator specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

When W=0 AL « AL V imm8
When W=1 AW « AW V immlé6

7) Flag operation

12-164

12.16.4 XOR (Exclusive Or)

(1) Register and register to register

1)

2)

3)

4)

5)

6)

Description format

XOR reg,reg

Instruction format
7 07 6 5 3 2 0

[0 01100 1W[1 1 reg reg

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words
None

Function

XORs the contents of the 8-~ or 16-bit register
specified by the first operand and the 8- or 16-bit
register specified by the second operand, and stores
the result in the register specified by the first
operand., The CY and V flags are cleared, while the
AC flag becomes undefined.

reg « reg ¥ reg

7) Flag operation

AC P Ccy

12-165

(2) Memory and register to memory

1) Description format

XOR mem,reg

2) Instruction format
7 07 6 5 3 2 0

[o 011000 Wlmod' reg memJ

T [0

I (disp-low) ' (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks

When w=0, 16
When w=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
XORs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit
register specified by the second operand, and stores
the result in the memory location addressed by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

(mem) <« (mem) ¥ reg

7) Flag operation

AC P CY

12-166

(3)

1)

2)

3)

4)

5)

6)

7)

Register and memory to register

Description format
XOR reg,mem

Instruction format

1 0 7 6 5 3 2 0
T 1]
[o 01100 lWImod reg mem]
T 07 0

I (disp-low) T (disp-high) ‘

Number of bytes
2/3/4

Number of clocks

When w=0, 11
When W=1, 15: uPD70108
uPD70116 odd addresses
11: pPD70116 even addresses

Number of transfers of 16-bit words
1

Function

XORs the contents of the 8- or 1l6-bit register
specified by the first operand and the 8- or 16-bit
memory contents addressed by the second operand, and
stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg « reg ¥ (mem)

Flag operation

12-167

(4) Register with immediate data to register

1) Description format
XOR reg,imm

2) Instruction format
7 07 6 S 32 0

T
|1000000W¥11110'reg—]

7 o7 0

[imm8 or imml6-low ’ imml6-high]

3) Number of bytes
3/4

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

A

6) Function
XORs the contents of the 8- or 16-bit register
specified by the first operand and the 8- or 16-bit
immediate data specified by the second operand, and
stores the result in the register specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

reg « reg ¥ imm

7) Flag operation

Z AC P CY

12-168

(5) Memory with immedate data to memory

1) Description format

XOR mem, imm

2) Instruction format
7 07 6 5 3 2 0

T T
|100 000 ow%mdll 0 mm]

7 [V 0
[imm8 or im16~low1 imml6-high l
7 07 0
| (disp-1low) ‘ (disp-high)]

3) Number of bytes
3/4/5/6

4) Number of clocks

When w=0, 18
When wW=1, 26: uPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
XORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data
specified by the second operand, and stores the result
in the memory location addressed by the first operand.
The CY flag and the V flag are cleared, while the AC
flag becomes undefined.

(mem) « (mem) % imm

12-169

7)

Flag operation

[0 4

12-170

(6) Accumulator with immediate data to accumulator

1) Description format

XOR acc, imm

2) Instruction format

7 [[0

001101 0W| irm8 or imml6-low imm16-high J

3) Number of bytes
2/3

4) Number of clocks
4

5) Number of transfers of 16-bit words

None

6) Function
XORs the contents of the accumulator (AL or AW)
specified by the first operand and the 8- or 1l6-bit
immediate data specified by the second operand, and
stores the result in the accumulator specified by the
first operand. The CY and V flags are cleared, while
the AC flag becomes undefined.

When W=0 AL « AL % imm8
When W=1 AW « AW % immlé

7) Flag operation

T T T T I
Z

12-171

12.17 Bit Manipulation Instruction

12.17.1 TEST1 (Test Bit)

(1)

1)

2)

3)

4)

5)

6)

bit CL of the 8-bit register

Description format
TEST1 reg8,CL

Instruction format
7 07 07 3 2 0

000011110001 00001100 0‘ reg]

Number of bytes

3

Number of clocks

3

Number of transfers of 16-bit words
None

Function

When bit CL of reg8 = 0, Z « 1
When bit CL of reg8 =1, Z « 0

Sets the z flag (to 1) when the bit specified by the
CL register of the 8-bit register specified by the
first operand is 0 and resets the z flag (to 0) when
the bit is 1. The CL value is valid for the lower 3
bits (0 to 7) only.

7) Flag operation

12-172

(2) bit CL of the 8-bit memory

1) Description format
TEST1 mem8,CL

2) Instruction format

7 [4 0 7 6 S 3 2 0

T T
h0001111[0001oooo[mod000 mem

7 [0

l (disp-low) J7 (disp-high) ‘J

3) Number of bytes
3/4/5

4) Number of clocks
12

5) Number of transfers of 16-bit words

None

6) Function
When bit CL of (mem8)
When bit CL of (mem8)

0, Z « 1
1, Z « 0

Sets the Z flag (to 1) when the bit specified by the
CL register of the 8-bit memory addressed by the
first operand is 0 and resets the 2 flag (to 0) when
the bit is 1. The CL value is valid for the lower 3
bits (0 to 7) only.

7) Flag operation

12-173

1)

2)

3)

4)

5)

6)

7)

bit CL of the 16-bit register

Description format
TEST1 reglé6,CL

Instruction format
7 07 0 7 3 2 0

T
{00001111{0001000111000 reg

Number of bytes
3

Number of clocks
3

Number of transfers of 16-bit words

None

Function

When bit CL of regle = 0, Z « 1
When bit CL of reglé =1, Z « 0

Sets the 2 flag (to 1) when the bit specified by the
CL register of the 16-bit register specified by the

first operand is 0 and resets the Z flag (to 0) when
the bit is 1. The CL value is valid for the lower 4

bits (0 to 15) only.

Flag operation

12-174

(4)

1)

2)

3)

4)

5)

6)

7)

bit CL of the 16-bit memory

Description format
TEST1 memlé6,CL

Instruction format
7 07 0 7 6 S 3 2 0

T]
IO 000111 1,0 001000 l[mod 00 0 mem J

K [0

l (disp-1ow) 1 (disp-high)]

Number of bytes
3/4/5

Number of clocks
16: uPD70108

uPD70116 odd addresses
12: uPD70116 even addresses

Number of transfers of 16-bit words

1

Function

When bit CL of (meml6) = 0, Z « 1
When bit CL of (meml6) = 0, Z « O

The first operand specifies the 16-bit memory location
and the second operand (CL) specifies the bit posi-
tion. When the bit specified by CL is 0, the Z flag

is set to 1. When that bit is 1, the Z flag is reset
to 0. CL is valid only for the lower 4 bits (0 to

15).

Flag operation

12-175

(5) bit imm3 of the 8-~bit register

1)

2)

3)

4)

5)

6)

Description format
TEST1 reg8,imm3

Instruction format
7 07 0

|7)0001111100011ooo]

7 3 2 0
T

07
rl 1 000 reg [44’ imm3]

Number of bytes
4

Number of clocks

a
4

Number of transfers of 16-bit words

None

Function

When bit imm3 of reg8 =0, 2 « 1
When bit imm3 of reg8 =1, 2 « 0

Sets the 2 flag (to 1) when the bit specified by the imm3
bit of the 8-bit register specified by the first operand
is 0 and resets the 2 flag (to 0) when the bit is 1.

only the lower 3 bits of the immediated data are valid in
the 4th byte of the instruction.

7) Flag operation

12-176

(6) bit imm3 of the 8-bit memory

1) Description format
TEST1 mem8, imm3

2) Instruction format
7 07 [}

LOOOOIII]‘OOOIIOOO]

7 6 S 3 2 07 0
[modlo 00 mem] (disp-1ow) J
7 07 0
[(disp-high) l i mm3]

3) Number of bytes
4/5/6

4) Number of clocks
13

5) Number of transfers of 16-bit words

None

6) Function

When bit imm3 of (mem8)
When bit imm3 of (mem8)

0, 2 « 1
1, 2 « O

)

The first operand specifies the 8-bit memory location

and the second operand (imm3) specifies the bit posi-

tion. When the bit specified by imm3 is 0, the Z flag

is set to 1. When that bit is 1, the Z flag is reset

to 0. The immediate data at the last byte of the instruction
is valid for the lower 3 bits only.

7) Flag operation

12-177

(7)

1)

3)

4)

5)

6)

7)

bit imm4 of the 16-bit register

Description format
TESTl regl6,imméd

Instruction format
7 0T 0

[6 000111 1[0 001100 1]

7 3 2 07 0

[1 1000 reg| i mm4 |

Number of bytes
4

Number of clocks
4

Number of transfers of 16-bit words

None

Function

When bit imm4 of reglé = 0, Z2 « 1
When bit imm4 of reglé =1, 2 « O

The first operand specifies the 16-bit register

and the second operand (imm4) specifies the bit posi-
tion. When the bit specified by imm4 is 0, the Z flag

is set to 1. When that bit is 1, the Z flag is reset

to 0. The immediate data at 4th byte of the instruction

is valid for the lower 4 bits only.

Flag operation

12-178

(8) bit imm4 of the 16-bit memory

1) Description format
TEST1 memlé6, imm4

2) Instruction format
7 07 0

l00001111looo11001
7 6 5 3 2 07 0

T
'mod 000" mem IAV (disp-low)]

07 0

T
L(disp-high) T imma]

3) Number of bytes
4/5/6

4) Number of clocks
17: uPD70108
puPD70116 odd addresses
13: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
When bit imm4 of (memlé6) 0, 2 « 1
When bit imm4 of (meml6) = 1, Z « O

The first operand specifies the 16-bit memory and the second
operand (imm4) specifies the bit position. When the bit
specified by imm4 is 0, the 2z flag is set to 1. When that
bit is 1, the 2 flag is reset to 0. The immediate data
in the last byte of the instruction is valid for the lower
4 bits only.

7) Flag operation

A T T T T

v S 2 AC P CY
0 9] X U U 0

12-179

12.17

(1)

1)

2)

3)

4)

6)

.2 NOT1 (Not Bit)

bit CL of the 8-bit register

Description format
NOT1 reg8,CL

Instruction format
7 07 [3 2 0

T
000O0O1111{00010110|11000 reg]

Number of bytes
3

Number of clocks
4

Number of transfers of 16-bit words
None

Function
Bit CL of reg8 « bit CL of reg8

The CL register (second operand) specifies which bit
of the 8-bit register specified by the first operand
is to be inverted. Only the lower 3 bits of the CL
register are valid.

Flag operation

None

12-180

(2)

1)

2)

3)

4)

5)

6)

bit CL of the 8-bit memory

Description format
NOT1 mem8,CL

Instruction format
7 07 07 6 5 3 2 0

T T T
[00001111[00010110Jmodooo mem

7 07 0

I (disp=-low) [(disp-high) J

Number of bytes
3/4/5

Number of clocks
18

Number of transfers of 16-bit words

None

Function
bit CL of (mem8) « bit CL of (mem8)

The CL register (second operand) specifies which bit
of the 8-bit memory location specified by the first
operand is to be inverted., Only the lower 3 bits of the

CL register are valid.

7) Flag operation

None

12-181

(3) bit CL of the 16-bit register

1)

3)

4)

5)

6)

7)

Description format
NOT1l regl6, CL

Instruction format
7 07 07 3 2 0

T
[0000111110001011111000 rng

Number of bytes
3

Number of clocks
4

Number of transfers of 16-bit words

None

Function
bit CL of reglé « bit CL of reglé

The CL register (second operand) specifies which bit
of the 16-bit register specified by the first operand
is to be inverted. Only the lower 4 bits of the CL re-

gister are valid.

Flag operation
None

12-182

(4) bit CL of the 16-bit memory

1) Description format
NOT1 memlé6,CL

2) Instruction format
7 07 07 6 5 3 2 0

Booo1111100010111{modrooo'mem

7 [0

l (disp-low) ’ (disp-high) 1

3) Number of bytes
3/4/5

4) Number of clocks
26: uPD70108
uPD70116 odd addresses

18: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
bit CL of (meml6) « bit CL of (memlé6)

The CL register (second operand) specifies which bit

of the 16-bit memory location addressed by the first
operand is to be inverted. Only the lower 4 bits of the
CL register are valid.

7) Flag operation
None

12-183

(5) bit imm3 of the 8-bit register

1) Description format
NOT1 reg8, imm3

2) Instruction format

7 0 7 [1]
{?ooo1111l0001111ﬂ
7 3 2 017 0
[l 100 0' reg l imm3 J

3) Number of bytes
4

4) Number of clocks
5

5) Number of transfers of 16-bit words
None

6) Function

bit imm3 of reg8 « bit imm3 of reg8

The bit imm3 (second operand) specifies which bit of
the 8-bit register specified by the first operand is

to be inverted. Only the lower 3 bits of the immediate
data at 4th byte of the instruction are valid.

7) Flag operation
None

12-184

(6) bit imm3 of 8-bit memory

1) Description format
NOT1l mem8,imm3

2) Instruction format

7 07 0
L? 000111 1,0 001111 0]
76 5 3 2 07 0
[mod'O 0 0K mem | (disp=low) J
7 07 0
[7 (disp-high) ’ imm3]
3) Number of bytes
4/5/6

4) Number of clocks
19

5) Number of transfers of 16-bit words

None

6) Function

bit imm3 of mem8 « bit imm3 of mems

The bit imm3 (second operand) specifies which bit

of the 8-bit memory location addressed by the first

operand is to be inverted. Only the lower 3 bits of the
immediate data are valid in the last byte of the instruction.

7) Flag operation
None

12-185

(7) bit imm4 of the 16-bit register

1) Description format
NOT1 regl6,imm4

2) Instruction format
7 0 7 0

[0 000111 1]0 001111 l}

7 3 2 07 0

r
‘l 1000 reg | imm4 J

3) Number of bytes
4

4) Number of clocks
5

5) Number of transfers of 16-bit words

None

6) Function

bit imm4 of reglé « bit immé of reglé

The bit imm4 (second operand) specifies which bit

of the 16-bit register specified by the first

operand is to be inverted. Only the lower 4 bits of the
immediate data are valid in the 4th byte of the instruction.

7) Flag operation
None

12-186

(8) bit imm4 of the 16-bit memory

1) Description format
NOT1 memlé, imm4

2) Instruction format
7 07 0

100001111[00011111]

T 6 5 3 2 0o 7 Q
[modIO 0 0I mem I (disp-low) I
7 [V 0
l (disp-high) [imm4]

3) Number of bytes
4/5/6

4) Number of clocks
27: uPD70108
uPD70116 odd addresses
19: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function

bit imm4 of (meml6) « bit immé4 of (meml6)

The bit imm4 (second operand) specifies which bit
of the 16-bit memory location addressed by the first
operand is to be inverted. Only the lower 4 bits of the

immediate data are valid in the last byte of the instruction.

7 Flag operation

None

12-187

(9) Carry flag

1) Description format
NOT1 CY

2) Instruction format
7 0

1110107

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function

CY « CY

Inverts the CY flag.

7) Flag operation

T T T T 1

\Y% S 2 AC P Ccy

8) Description example
NOT1l CY

12-188

12.17.3 CLRl (Clear Bit)

(1) bit CL of the 8-bit register

1) Description format
CLRl1 reg8,CL

2) Instruction format
7 07 07 3 2 0

00001 111{000100710/11000 reg

3) Number of bytes
3

4) Number of clocks
5

5) Number of transfers of 16-bit words

None

6) Function

bit CL of reg8 « 0

Clears the bit (to 0) specified by the CL register
of the 8-bit register specified by the first
operand. Only the lower three bits are valid
for CL.

7) Flag operation
None

12-189

(2) bit CL of the 8-bit memory

1) Description format
CLR1 mem8,CL

2) Instruction format
7 0 7 0 7 6 5 32 0

T 1
[00001111!0001oo1olmodooo mem
L

7 07 0

r' (disp-low) } (disp-high)]

3) Number of bytes
3/4/5

4) Number of clocks
14

5) Number of transfers of 16-bit words

None
6) Function
bit CL of (mem8) <« 0
Clears the bit (to 0) specified by the CL register
of the 8-bit memory location addressed by the first

operand. Only the lower three bits are valid for CL.

7) Flag operation
None

12-190

(3)

1)

2)

3)

4)

6)

7)

bit CL of the 16-bit register

Description format
CLR1l regl6,CL

Instruction format
7 07 07 3 2 0

T
0000 11110001001 1{1 1000 reg

Number of bytes
3

Number of clocks
5

Number of transfers of 16-bit words
None

Function
bit CL of regl6 « 0

Clears the bit (to 0) specified by the CL register
of the 16-bit register specified by the first

operand. Only the lower four bits are valid for CL.

Flag operation
None

12-191

(4) bit CL of the 16-bit memory

1)

2)

3)

4)

5)

6)

7)

Description format
CLRl memlé6,CL

Instruction format
7 07 0 7 6 5 3 2 0

o000 11 11b 00 1 0011[mdh OOImmJ

i

7 o7 0

[(disp-low) ‘ (disp-high) }

Number of bytes
3/4/5

Number of clocks
22: uPD70108
uPD70116 odd addresses

14: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function
bit CL of (meml6) « O
Clears the bit (to 0) specified by the CL register

of the 16-bit memory location addressed by the first
operand. Only the lower 4 bits are valid for CL.

Flag operation

None

12-192

(5) bit imm3 of the 8-bit register

1) Description format
CLR1l reg8,imm3

2) Instruction format
7 07 0

[0 000111 1!0 001101 Ol

7

3
[L1ooo‘

3) Number of bytes
4

2 0

07
reg ’ imm3]

4) Number of clocks
6

5) Number of transfers of 16-bit words

None
6) Function
bit imm3 of reg8 « 0
Clears (to 0) the bit specified by the 3-bit
immediate data (second operand) of the 8-bit register
specified by the first operand. Only the lower 3 bits of the

immediate data are valid in the 4th byte of the instruction.

7) Flag operation

None

12-193

(6) bit imm3 of the 8-bit memory
1) Description format
CLR1 mem8, imm3

2) Instruction format

1 0

7 0
{6 000111 1!0 0011010
76 3 2 o 7 0

5

[mod\O 0 0‘ mem l (disp=low) AJ
1 o7 0
((disp-high) l imm3 J
3) Number of bytes
4/5/6

4) Number of clocks
15

5) Number of transfers of 16-bit words

None

6) Function
bit imm3 of (mem8) « O

Clears (to 0) the bit specified by the 3-bit immediate

data (second operand) of the 8-bit memory location

addressed by the first operand. Only the lower 3 bits of the
immediate data are valid in the last byte of the instruction.

7) Flag operation

12-194

(7)

1)

2)

3)

4)

5)

7)

bit imm4 of the 16-bit register

Description format
CLRl reglé6,imm4

Instruction format
7 [0

50001111!000110111

7 3 2 07 0

T
ll 1 000 reg ' imm4]

Number of bytes
4

Number of clocks
6

Number of transfers of 16-bit words
None

Function

bit imm4 of reglé « 0

Clears (to 0) the bit specified by the 4-bit immediate

data (second operand) of the 16-bit register specified

by the first operand. Only the lower 4 bits of the immediate

data are valid in the 4th byte of the instruction.

Flag operation

None

12-195

(8) bit imm4 of the 16-bit memory

1) Description format
CLR]l memlé6, imm4

2) Instruction format
7 07 0

[0 000111 1]0 001101 IJ

7 6 5 3 2 0o 7 0
(mod(O 0 0 mem l (disp-low) J

7 07 0
l (disp-high) ’ imm4 }

3) Number of bytes
4/5/6

4) Number of clocks

27: uPD70108
uPD70116 odd addresses
15: uPD70116 even addresses

5) Number of transfers of 16-bit words
3

6) Function
bit imm4 of (meml6) « O

Clears (to 0) the bit specified by the 4-bit immediate
data (second operand) of the 16-bit memory location
addressed by the first operand. Only the lower 4 bits of

immediate data are valid in the last byte of the instruction.

7) Flag operation
None

12-196

(9) carry flag

1) Description format
CLR1 CY

2) Instruction format

7 0
111110 048J

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function

CY « 0

Clears the CY flag.

7) Flag operation

\' S 2 AC P Cy

12-197

(10) Direction flag

1) Description format
CLRl1 DIR

2) Instruction format
7 0

Li,l 111100

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None
6) Function
DIR « 0
Clears the DIR flag.
Sets index registers IX and IY to autoincrement at the
execution of MOVBK, CMPBK, CMPM, LDM, STM, INM, and

OUTM instructions.

7) Flag operation

DIR
0

8) Description example
CLR1 DIR

12-198

12.17.4 SET1 (Set Bit)

(1)

1)

2)

3)

4)

5)

6)

7)

bit CL of the 8-bit register

Description format
SET1 reg8,CL

Instruction format
7 07 07 3 2 0

L
lB 0001111{00010100{11000 reg

Number of bytes
3

Number of clocks
4

Number of transfers of 16-bit words
None

Function

bit CL of reg8 « 1

Sets(to 1l)the bit specified by the CL register (second
operand) of the 8-bit register specified by the first
operand. Only the lower 3 bits are valid for CL.

Flag operation

None

12-199

(2) bit CL of the 8-bit memory

1)

4)

6)

7)

Description format
SET]1 mem8,CL

Instruction format
7 07 07 6 5 3 2 0

T T T
lo 0001 111/00010100|/mod000 mem

T [0
| (disp-low) (disp-highzgj
Number of bytes
3/4/5

Number of clocks
13

Number of transfers of 16-bit words

None

Function
bit CL of (mem8) « 1

Sets(to 1)the bit specified by the CL register (second
operand) of the 8-bit memory location addressed by the

first operand. Only the lower 3 bits are valid for CL.

Flag operation

None

12-200

(3) bit CL of the 16-bit register

1)

2)

3)

4)

5)

6)

7)

Description format
SET1 reglé6,CL

Instruction format
7 07 07 3 2 0

5000111100010101l11000'reg1

Number of bytes
3

Number of clocks
4

Number of transfers of 16-bit words
None

Function
bit CL of reglé « 1

Sets(to 1) the bit specified by the CL register (second
operand) of the 16-bit register specified by the

first operand. Only the lower 4 bits are valid for CL.

Flag operation
None

12-201

(4) bit CL of 16-bit memory

1)

2)

3)

4)

5)

6)

7)

Description format
SET1 meml6,CL

Instruction format
7 07 07 6 5 3 2 0

T T
IOGOOI111!00010101]mod000 mein

i
]

7 07 0

i (disp-low) L (disp-high)]

Number of bytes
3/4/5

Number of clocks

21: uPD70108
uPD70116 odd addresses
13: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

bit CL of (meml6) <— 1
Sets(to l)the bit specified by the CL register (second
operand) of the 16-bit memory location addressed by the
first operand. Only the lower 4 bits are valid for CL.

Flag operation

None

12-202

(5) bit imm3 of the 8-bit register

1)

2)

3)

4)

5)

6)

7)

Description format
SET1 reg8,imm3

Instruction format
7 07]

T
IO 000111 1!0 001110 0]

7 3 2 07 0

T
II 1 000 reg I imm3 l

Number of bytes
4

Number of clocks
5

Number of transfers of 16-bit words

None

Function

bit imm3 of reg8 « 1

Sets(to 1)the bit specified by the 3-bit immediate

data (second operand) of the 8-bit register specified

by the first operand. Only the lower 3 bits of the immediate

data are valid in the 4th byte of the instruction.

Flag operation
None

12-203

(6) bit imm3 of the 8-bit memory

1) Description format
SET1 mem8, imm3

2) Instruction format

7 o7 0
(0 000111 1!0 06 01110 OJ

7 6 S5 3 2 07 0
[modIO 0 0I mem I (disp-low) J

7 07 0
l (disp-high) l imm3]

3) Number of bytes
4/5/6

4) Number of clocks
14

5) Number of transfers of 16-bit words

None
6) Function
bit imm3 of (mem8) +« 1
Sets(to 1) the bit specified by the 3-bit immediate
data (second operand) of the 8-bit memory location
addressed by the first operand. Only the lower 3 bits of

immediate data are valid in the last byte of the instruction.

7) Flag operation

None

12-204

(7) bit imm4 of the 1l6-bit register

1)

2)

3)

4)

5)

6)

7)

Description format
SET1 regl6,immd

Instruction format
7 07 0

100001111,00011101]

7 3 [0
¥

ll 100 0 reg ' immd4 41

Number of bytes

4

2

Number of clocks
5

Number of transfers of 16-bit words

None

Function
bit imm4 of reglé « 1

Sets (to 1) the bit specified by the 4-bit immediate

data (second operand) of the 16-bit register

specified by the first operand. Only the lower 4 bits of the
immediate data are valid in the 4th byte of the instruction.
Flag operation

None

12-205

(8) bit imm4 of the 16-bit memory

1) Description format
SET1 meml6,imm4

2) Instruction format
7 07 0

{00001111!00011101

7 6 5 3 2 07 0
T T
[;od 0 0 0 mem] (disp-low) j
7 07 0
‘ (disp~high) l immd I

3) Number of bytes
4/5/6

4) Number of clocks

22: uPD70108
uPD70116 odd addresses
14: pyPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
bit imm4 of (meml6)<— 1
Sets(to 1)the bit specified by the 4-bit immediate
data (second operand) of the 16-bit memory location
addressed by the first operand. Only the lower 4 bits of
immediate data are valid in the last byte of the instruction.

7) Flag operation
None

12-206

(9) carry flag

1) Description format
SET1 CY

2) Instruction format

17 0
[1111100ﬂ

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function

CY « 1

Sets the CY flag.

7) Flag operation

T T T 1) T
\4 S z AC p cY]

12-207

(10)

1)

2)

3)

4)

6

)

7)

w
~

Direction flag

Description format
SET1 DIR

Instruction format
7 0

11111101

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None
Function

DIR « 1

Sets the direction flag.

Sets index registers IX and IY to autodecrement at the
execution of the MOVBK, CMPBK, CMPM, LDM, ST™M, INM,
and OUTM instructions.

Flag operation

12-208

12.18 shift Instructions

12.18.1 SHL (Shift Left)

(1) Register single-bit

1)

2)

3)

5)

6)

Description format
SHL regqg,l

Instruction format
4 076 s 32 0

{1104000W11'1oo' reg]

Number of bytes
2

Number of clocks
2

Number of transfers of 16~bit words
None

Function

Performs shift left (1 bit) of the 8- or 16-bit
register specified by the first operand. Zero is
loaded to the LSB of the specified register and the
MSB is shifted to the CY flag. If the sign bit is
the same after the shift, the V flag is cleared.

reg8/16
cY 15/714/6 9 0
— 0
7) Flag operation
1 T T T T
2 AC P CYy
X X U X

12-209

(2) Memory single-bit

1) Description format
SHL mem,1l

2) Instruction format

T 0 7 6 5 3 2 0
F101ooowlmd'1oo' mem |
ki 07 0
r (disp-low) l (disp-high) 1

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 16
When wW=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Performs shift left (1 bit) of
the 8- or 16-bit memory location addressed by the
first operand. Zero is loaded to the addressed memory
1LSB and the MSB is shifted to the CY flag. If the sign
bit (bit 7 or 15) remains the same after the shift,

the V flag is cleared.

(mem8/16)
CcY 15/7 14/6 L 0
— 0
4
7) Flag operatipn
T T T T T

\ 2 AC CY
X X X U X

12-210

(3)

1)

2)

3)

4)

5)

6)

7)

Register variable-bit

Description format
SHL reg,CL

Instruction format
7 0 76 s 3 2 0

t101001w11'1oo' reg_]

Number of bytes
2

Number of clocks

7 + n (n: number of shifts)

Number of transfers of 16-bit words

None

Function

Performs shift left (by the number of bits equal to
the number of bits in the CL register) of the 8- or
16-bit register specified by the first operand. Zero
is loaded to the specified register's LSB and the
MSB is shifted to the CY flag.

. reg8 /16
cY 15/7 . 0
-_— 0
Flag operation
T T LI B
\ S Z AC P cYy
U X U X

12-211

(4) Memory variable-bit

1) Description format
SHL mem,CL

2) Instruction format
7 0 7T 6 S 3 2 0

|1101001w{mod100 mem

7 o7 0

l (disp-low) ! (disp-high) }

3) Number of bytes
2/3/4

4) Number of clocks
When w=0, 19 + n
When wW=1, 27 + n: uPD70108
pPD70116 odd addresses
19 + n: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Performs shift left (by the)
number of bits equal to the number of bits in the CL
register) of the 8- or 1l6-bit memory location address-
ed by the first operénd. Zero is loaded to the address-
ed memory LSB and the MSB is shifted to the CY flag.

(mem8,/16)
cY 15/7 L 0
0
7) Flag operation
T T T T T
\Y S AC CY
U X U X

12-212

(5) Register multi-bit

1) Description format
SHL reg,imm8

2) Instruction format
7 07 3 2 07 0

1 100000W1 1100 reg imm8]

3) Number of bytes
3

4) Number of clocks
7 + n n: number of shifts

5) Number of transfers of 16-bit words

None

6) Function
Performs shift left (by the bit numbers specified by
the 8-bit immediate data, second operand) of the 8- or
16-bit register specified by the first operand. Zero
is loaded to the specified register's LSB and the
MSB is shifted to the CY flag.

reg8/16
cY 15/7 « 0
20
7) Flag operation
T T T T T
\4 S Z AC P cYy
U X X U X X

12-213

(6) Memory multi-bit

1)

2)

3)

4)

5)

6)

7)

Description format

SHL mem, imm8

Instruction format

7 07 65 3 2 07 0
h 100000 Wlnwd‘l 0 0‘ memAL (disp-low) J
T 07 0
L, (disp high) [imm8 I

Number of bytes
3/4/5

Number of clocks
When wW=0, 19 + n
When w=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

Number of transfers of 16-bit words
2

Function

Performs shift left (by the bit numbers specified by
the 8-bit immediate data, second operand) of the 8-
or 16-bit memory location addressed by the first
operand., Zero is loaded to the specified memory
location's LSB and the MSB is shifted to the CY flag.

(mem8,/16)
cY 15/7 ‘« 0
— 0
Flag operation
T Y T T T
\% Z AC CY
U X X U X X

12-214

12.18.

2 SHR (Shift Right)

(1) Register single-bit

1)

2)

3)

4)

5)

6)

Description format
SHR reg,l

Instruction format
7 07T 6 5 3 2

0
lllOlOOOWlllOlrreg_l

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words
None

Function

Performs logical shift right (1 bit) of the 8- or 16-bit
register specified by the first operand. Zero is

loaded to the specified register's MSB and the LSB is
shifted to the CY flag. If the sign bit (bit 7 or 15)
remains the same after the shift, the Vv flag is

cleared.
reg8/16
cY 15/714/6 - 0
0 —
7) Flag operation
T T T 1 i
2 AC P CY
X X U X

12-215

(2) Memory single-bit

1)

2)

3)

4)

5)

6)

7)

Description format
SHR mem, 1

Instruction format
7 DT 6 5 3 2 0

T 1
lllOlOOOWlmolel memJ

7 07 0
l (disp-low) I (disp‘high)AJ

Number of bytes
2/3/4

Number of clocks
When wW=0, 16
When W=1, 24: uPD70108
pPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Performs logical shift right (1 bit) of the 8- or 16-bit
memory location addressed by the first operand. Zero is
loaded to the memory location's MSB and the LSB is shift-
ed to the CY flag. If the sign bit (bit 7 or 15) remains
the same after the shift, the VvV flag is cleared.

(mem8/16)
CY 15/714/6 0

ye
3

Flag operation

12-216

(3) Register variable-bit

1)

2)

3)

4)

5)

6)

7)

Description format
SHR reg,CL

Instruction format
7 07 6 5 3 2 0

1xo1001w{11101 rng

Number of bytes
2

Number of clocks
7 + n (n: number of shifts)

Number of transfers of 16-bit words
None

Function

Performs logical shift right (by the number of bits
equal to the value of the CL register) of the 8- or
16-bit register specified by the first operand. Zero
is loaded to the specified register's MSB and the LSB
is shifted to the CY flag.

reg8/16

cY 15/7 i 0

0 —={
4
Flag operation

T T T T T

Z AC P CcY
U X X U X X

12-217

(4) Memory variable-bit

1)

4)

5)

6)

7)

Description format
SHR mem,CL

Instruction format

7 0 7 6 5 3 2 0
ITI 0100 lwimod‘l 01 menj
7 07 0
l (disp-low) (disp-high)]

Number of bytes
2/3/4

Number of clocks
When W=0, 19 + n
when wW=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

Number of transfers of 16-bit words
2

Function

pPerforms logical shift right (by the number of bits
equal to the value of the CL register) of the 8- or
16-bit memory location addressed by the first operand.
7ero is loaded to the memory location's MSB and the
LSB is shifted to the CY flag.

cY 15/7 o 0

Flag operation

12-218

(5) Register multi-bit

1)

2)

3)

4)

5)

6)

7)

Description format

SHR reg, imm8

Instruction format
7 07 3 2 07 0

11ooooowr11101'reg irm8

Number of bytes
3

Number of clocks

7 + n (n: number of shifts)

Number of transfers of 16-bit words
None

Function

Performs shift right (by the number of bits specified

by the 8-bit immediate data of the second operand) of
the 8- or 16-bit register specified by the first operand.
Zero is loaded to the specified register's MSB and the
LSB is shifted to the CY flag.

reg8/16
cY 15/7 0

Prs
-4

Flag operation

12-219

(6) Memory multi-bit

1) Description format

SHR mem, imm8

2) Instruction format

kd 0 6 5 3 2 0T 0
T T 1

{1 IOOOOOW‘mod 101 mem | (disp-low)

7 07 [1]

r (disp-high)

irms8 J

3) Number of bytes
3/4/5

4) Number of clocks
When wW=0, 19 + n

When wW=1, 27 + n:

19 + n:

uPD70108

uPD70116 odd addresses
uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words

2

6) Function

Performs shift right (by the number of bits specified

by the 8-bit immediate data of the second operand) of

the 8- or 16-bit memory location addressed by the first

operand. Zero is loaded to the memory location's MSB and
the LSB is shifted to the CY flag.

(mem8,/16)
cY 15/7 . 0
o ey
£f
7) Flag operation
T T T 1 T
v AC P CYy
U X U X

12-220

12.18.

3 SHRA (shift Right Arithmetic)

(1) Register single-bit

1)

2)

3)

4)

5)

6)

7)

Description format
SHRA reg,l

Instruction format
7 0 756 5 3 2 0

1101000W11111 reg]

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None
Function

Performs arithmetic shift right (1 bit) of the 8- or
16-bit register specified by the first operand. A bit
with the same value as the original bit is shifted to
the specified register's MSB and the LSB is shifted to
the CY flag. The sign remains unchanged after the
shift,

CY 157 0

Flag operation

Z AC P (924

12-221

(2) Memory single-bit’

1) Description format
SHRA mem,1

2) Instruction format

7 07 6 5 3 2 0

|1 101 OOOW{modll 11 memJI

7 07 0
[(disp-low) [(disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 16
When w=1, 24: yPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
Performs arithmetic shift right (1 bit) of the 8- or
16-bit memory location addressed by the first operand.
A bit with the same value as the original bit is
shifted to the memory location's MSB and the LSB
is shifted to the CY flag. The sign remains unchanged

after the shift.

(mem8,/16)
CY 157 0

e

!

7) Flag operation

12-222

(3)

1)

2)

3)

4)

5)

6)

7)

Register variable-bit

Description format
SHRA reg,CL

Instruction format
7 07 6 s 3

2 0
1101001W11111 regj

Number of bytes
2

Number of clocks

7 + n (n= number of shifts)

Number of transfers of 1l6-bit words
None

Function

Performs arithmetic shift right (by the number of bits
equal to the number of bits in the CL register) of the
8- or 16-bit register specified by the first operand.
A bit with the same value as the original bit is
shifted to the register's MSB and the LSB is shifted
to the CY flag. The sign remains unchanged after the

shift.

reg8/16
cY 157 0

£ G
aks

Flag operation

12-223

(4) Memory variable-bit

1) Description format
SHRA mem,CL

2) Instruction format

T 0 7T 6 5 3 2 0
[1101001Wmd111 men |

17 07 0
[(disp-low) I (disp-high) }

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 19 + n
When wW=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Performs arithmetic shift right (by the number of bits equal
to the number of bits in the CL register) of the 8- or
16-bit memory location addressed by the first operand. A
bit with the same value as the original bit is shifted to
the memory location's MSB and the LSB is shifted to the

CY flag. The sign remains unchanged after the shift.

(mem8,/16)
L 0

L “

7) Flag operation

CY 157

12-224

(5)

1)

2)

3)

4)

5)

6)

7)

Register multi-bit

Description format

SHRA reg, imm8

Instruction format
7 07 3 2 07 0

[t100000wWi11111 reg imm8

Number of bytes
3

Number of clocks
7 + n (n: number of shifts)

Number of transfers of 16-bit words

None

Function

Performs arithmetic shift right (by the number of bits
specified by the 8-bit immediate data in the second
operand) of the 8- or 16-bit register specified by the
first operand. A bit with the same value as the ori-
ginal bit is shifted to the register's MSB and the LSB
is shifted to the CY flag. The sign remains unchanged
after the shift,

reg8/16
cY 157 " 0
Flag operation
T T T T T
v AC CcY
U X U X

12-225

(6) Memory multi-bit

1)

2)

3)

4)

5)

6)

Description format

SHRA mem, imm8

Instruction format

0

(disp-low) ‘J

T 0 7 6 S 3 2 0 7
[IlOOOOOW]mcd'Ill‘ mem|
7 0 7 0
fﬁ (disp-high) ‘ imm8 l

Number of bytes

3/4/5
Number of

When w=0,
When w=1,

Number of
2

Function

clocks
19 + n
27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

transfers of 16-bit words

Performs arithmetic shift right (by the number of bits spe-

cified by the 8-bit immediate data in the second operand)

of the 8- or 16-bit memory location addressed by the first

operand. A bit with the same value as the original bit is
shifted to the register's MSB and the LSB is shifted to

the CY flag. The sign remains unchanged after the shift.

CcY

(mem8,/16)

15/

s
als

mEEE——

7) Flag operation

AC P Ccy

12-226

12.19

12.19.

Rotate Instructions

1 ROL (Rotate Left)

(1) Register single-bit

1)

2)

3)

4)

5)

6)

Description format
ROL reg,1

Instruction format
7 076 5 3 2

0
L1101000w11'ooor regw

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words
None

Function

Rotates left by 1 bit the 8- or 16-bit register
specified by the first operand. If the MSB changes,
the v flag is set; if it stays the same, the V flag
is cleared.

regd8/16
cY 15/7 14,6 » 0
7) Flag operation
T T T T T
S 2 AC P CY
X X

12-227

(2) Memory single-bit

1) Description format
RCL mem,1

2) Instruction format
7 07 6 5 3 2 0

Il 101000 W1nnd 0 0 0 mem J

7 07 0
| (disp-low) ‘ (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 1l6-bit words
2

6) Function
Rotates left by 1 bit the 8- or 16-bit memory location
addressed by the first operand. If the MSB changes,
the v flag is set; if it stays the same, the V flag
is cleared.

(mem8.,/16)
cYy 15/714/6 N 0
7) Flag operation
| 1 1 0 i
S Z AC P CY
X X

12-228

(3) Register variable-bit

1) Description format
ROL reg,CL

2) Instruction format
7 07 6 5 3 2 0

T T T
1101001W11000 reg l

3) Number of bytes
2

4) Number of clocks
7 + n (n: number of shifts)

5) Number of transfers of 16-bit words

None
6) Function
Rotates left (by the number of bits equal to the

number of bits in the CL register) the 8- or 16-bit

register specified by the first operand.

reg8/16
cY 157 N 0
7) Flag operation
T { T I T
\ S Y4 AC P CcYy
U X

12-229

(4) Memory variable-bit

1) Description format
ROL mem,CL

2) Instruction format
7 0 76 S 3 2 0

[1 10100 1w1mod'o 00 memJ

K 0 7 0

l (disp-low)] (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When w=0, 19 + n
When w=1, 27 + n: pPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates left (by the number of bits equal to the
number of bits in the CL register) the 8~ or 1l6-bit
memory location addressed by the first operand.

(mem8,16)
cY 15/7 i 0
7) Flag operation
T T T T T
S 2 AC P CcYy
18] X

12-230

(5) Register multi-bit

1) Description format

ROL reg, imm8

2) Instruction format
7 07 3 2 07 0

|Txooooow11ooo'reg imm8

3) Number of bytes
3

4) Number of clocks
7 + n (n: number of shifts)

5) Number of transfers of 16-bit words

None

6) Function
Rotates left (by the number of bits specified by the
8-bit immediate data in the second operand) the 8- or
16-bit register specified by the first operand.
The register's MSB is shifted to the CY flag
and also to the LSB.

reg8/16
cY 15/714/6 - 0
7) Flag operation
T T T T T
\ S Z AC P CY
U X

12-231

(6) Memory multi-bit

1) Description format

ROL mem, imm8

2) Instruction format

T 07 6 5 3 2 07 0
1100000 WLmod 000 mem l (disp- low) J
T 07 []

[(disp-high) [imms j
3) Number of bytes
3/4/5

4) Number of clocks
When w=0, 19 + n
When W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: puPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates left (by the number of bits specified by the 8-bit
immediate data in the second operand) the 8- or 16-bit
memory location addressed by the first operand. The memory
location's MSB is shifted to the CY flag and also to the LSB.

(mem8,/16)
cY 15/7 X 0
7) Flag operation
T T T T T
A\ S Z AC P cYy
U X

12-232

12.19.2 ROR (Rotate Right)

(1)

1)

2)

3)

4)

5)

6)

7)

Register single-bit

Description format
ROR reg,l

Instruction format
7 07 6 5 3 2 0

[1101000\7{11001’ rng

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words
None

Function

Rotates right by 1 bit the 8- or 16-bit register
specified by the first operand. If the MSB of the
specified register changes, the overflow flag is set.
If the MSB stays the same, the overflow flag is
cleared.

reg8/16
cY 15/7 14/6 » 0

B
I

Flag operation

12-233

(2) Memory single-bit

1) Description format

ROR mem,1

2) Instruction format

1 0

7T 6

5 3 2 0

f11o1ooow!md'oox' memJ‘

7 0

T

0

[(disp—low) I

(disp—high)AJ

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 16

When w=1, 24: uPD70108
uPD70116 odd addresses
16: pPD70116 even addresses

5) Number of transfers

2

6) Function
Rotates right by
addressed by the
addressed memory
If the MSB stays

of 16-bit words

1 bit the 8- or 16-bit memory location
first operand. If the MSB of the

changes, the overflow flag is set.

the same, the overflow flag is

cleared.
(mem8,/16)
CcY 15/7 14/6) 0
‘;
7) Flag operation

T T T T T

\ S 2 AC P CY

X X

12-234

(3)

1)

2)

3)

4)

5)

6)

7)

Register variable-bit

Description format
ROR reg,CL

Instruction format
7 07T 6 S 3 2 0

1101001W11001 reg]

Number of bytes
2

Number of clocks
7 + n (n: number of shifts)

Number of transfers of 16-bit words
None

Function

Rotates right (by the number of bits equal to the
number of bits in the CL register) the 8- or 16-bit
register specified by the first operand.

reg8/16
cY 15/1 - 0
{—
Flag operation
T T T T T
\Y S 2 AC P CY
U X

12-235

(4) Memory variable-bit

1) Description format
ROR mem,CL

2) Instruction format
7 07 6 5 3 2 0

1] T
|1x01001w‘imodoox memJ

7 0o 7 0

l (disp-low) (disp-high)]

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 19 + n
When W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates right (by the number of bits equal to the
number of bits in the CL register) the 8- or 16-bit
memory location specified by the first operand.

(mem8./16)
cY 15/7 B 0
7) Flag operation
T T T T T
\Y S 2 AC P CY
U X

12-236

(5) Register multi-bit

1)

2)

3)

4)

5)

6)

Description format

ROR reg,imm8

Instruction format
7 07 3 2 07 0

T
1100000w111oo1 reg i mm8

Number of bytes
3

Number of clocks
7 + n (n: number of shifts)

Number of transfers of 16-bit words

None

Function

Rotates right (by the number of bits specified by
the 8-bit immediate data in the second operand) the
8- or 1l6-bit register specified by the first
operand. The register's LSB is shifted to the MSB as
well as to the CY flag.

reg8/16
cYy 15/7 » 0
L2
7) Flag operation
1 1 T T i
S Z AC P CY
U X

12-237

(6) Memory multi-bit

1) Description format
ROR mem, imm8

2) Instruction format
7 0 7 6 5 3 2 07 0

[1 10000 ow|mod'o 01 mem ! (disp-1ow) 1

7 [0
l (disp-high) l imm8]
3) Number of bytes
3/4/5

4) Number of clocks
When W=0, 19 + n
When W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uyPD70116 even addresses
(n: number of shifts)

S) Number of transfers of 16-bit words
2

6) Function
Rotates right (by the number of bits specified by the
8-bit immediate data in the second operand) the 8- or
16-bit memory location addressed by the first operand.
The'memory location's LSB is shifted to the MSB as
well as to the CY flag.

(mem8,/16)
cY 157) 0
7) Flag operation
T T T L T
\Y% S 2 AC P CY
U X

12-238

12.19.3 ROLC (Rotate Left with Carry)

(1) Register single-bit

1) Description format
ROLC reg,1

2) Instruction format
7 076 5 3 2 0

T T
110100 0W11010 reg

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Rotates left by one bit (including the CY flag) the 8- or
16-bit register specified by the first operand. If the
register's MSB changes, the V flag is set. If it stays
the same, the Vv flag is cleared.

reg8/16
cY 15/7 14/6 L 0
7) Flag operation
T T T T U
\% S Z AC P CYy
X X

12-239

(2) Memory singl-bit

1)

2)

3)

4)

6)

Description format
ROLC mem,1l

Instruction format
7 07 6 5 3 2 0

[1101 ooowhm'o1o'mmj

7 [0

[(disp-low)] (disp-high) J

Number of bytes
2/3/4

Number of clocks
When w=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: pPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Rotates left by one bit (including the CY flag) the 8- or
16-bit memory location addressed by the first operand.

If the memory location's MSB changes, the VvV flag is

set., If it stays the same, the V flag is cleared.

(mem8/16)
cY 15,7 14/6 B 0
7) Flag operation
T T T T 1
\'A S Z AC P CY
X X

12-240

(3) Register variable-bit

1) Description format
ROLC regqg,CL

2) Instruction format
7 0 76 5 3 2 0

1101001W11010 reg’j

3) Number of bytes
2

4) Number of clocks
7 + n (n: number of shifts)

5) Number of transfers of 16-bit words
None

6) Function
Rotates left (including the CY flag) the 8- or 16-bit
register specified by the first operand by the number
of bits equal to the number of bits in the CL register.

reg8/16
cY 157 N 0
7) Flag operation
T T T T T
\% S 2 AC P CcYy
U X

12-241

(4) Memory variable-bit

1) Description format
ROLC mem,CL

2) Instruction format
7 07 6 5 3 2 0

]110 1001 Wmdo10 mm]

7 07 0

I (disp-1ow) } (disp-high) [

3) Number of bytes
2/3/4

4) Number of clocks
When wW=0, 19 + n
When W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates left (including the CY flag) the 8- or 16-bit
memory location addressed by the first operand by the
number of bits equal to the number of bits in the CL
register.

(mem8./16)
cy 1547 . 0
~f
7) Flag operation
T T T T T
\ S Z AC P CY
§) X

12-242

(5) Register multi-bit

1)

3)

4)

5)

6)

7)

Description format
ROLC reg, imm8

Instruction format
7 07 3 2 o7 0

[1100000W11010 reg i mm8 7

Number of bytes
3

Number of clocks

7 + n (n: number of shifts)

Number of transfers of 16-bit words
None

Function

Rotates left (including the CY flag) the 8- or 16-bit
register specified by the first operand by the number
of bits specified by the 8-bit immediate data of the

second operand.

reg8/16
cY 15/7 - 0
Flag operation
i r T I T
\ S Z AC P Cy
U X

12-243

(6) Memory multi-bit

1) Description format

ROLC mem, imm8

2) Instruction format

7 0 7 6 5 3 2 07 0
[1 100000 W1nnd10 1 0 mem l (disp-low)

7 07 0
| Cdisp-nign) | imm8 J

3) Number of bytes
3/4/5

4) Number of clocks
When wW=0, 19 + n
When wW=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: puPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates left (including the CY flag) the 8- or 16-bit
memory location addressed by the first operand by the
number of bits specified by the 8-bit immediate
data of the second operand.

(mem8,16)
cY 15/7 L 0
7) Flag operation
] i] i T
\4 S Z AC P Cy
U X

12-244

12.19.4 RORC (Rotate Right with Carry)
(1) Register single-bit

1) Description format
RORC reg,1l

2) Instruction format
7 076 5 3 2 0

1101000W11011 reg

3) Number of bytes
2

4) Number of clocks
2

5) Number of transfers of 16-bit words
None

6) Function
Rotates right (including the CY flag) by one bit the
8- or 16-bit register specified by the first operand.
If the MSB changes, the V flag is set. If it remains
unchanged, the Vv flag is cleared.

reg8/16
cY 15/7 14/6 N 0
— f—
7) Flag operation
T T T T T
S 2 AC P CYy
X X

12-245

(2) Memory single-bit

1)

2)

3)

4)

5)

6)

7)

Description format
RORC mem, 1

Instruction format
7 07 6 S 3 2 0

L} 101000 Wlnndlo 1 l‘ mem l

7 07 0

L, (disp-low) I (disp-high) l

Number of bytes
2/3/4

Number of clocks
When w=0, 16
When W=1, 24: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

Rotates right (including the CY flag) by one bit the
8- or 1l6-bit memory location addressed by the first
operand. If the MSB changes, the V flag is set. If it
remains unchanged, the Vv flag is cleared.

(mem8,16)
CcY 15/7 14/6 . 0
Flag operation
T T T 1 T
v S 2 AC P CY
X X

12-246

(3) Register variable-bit

1) Description format
RORC reg,CL

2) Instruction format
4 07 6 5 3 2 0

(1101001W{11011reg]

3) Number of bytes
2

4) Number of clocks
7 + n (n: number of shifts)

5) Number of transfers of 16-bit words

None

6) Function
Rotates right (including the CY flag) by the number of
bits equal to the number of bits in the CL register
the 8- or 16-bit register specified by the first

operand.

regd8/16

cY 15/1 - 0
—if

7) Flag operation
T T T T T
S Z AC P CY
U X

12-247

(4) Memory variable-bit

1) Description format
RORC mem,CL

2) Instruction format
7 07 6 5 3 2 0

1] T
lllGlOOlWEmodOll memJ

7 07

[]
[(disp-1ow) (disp-high) J

3) Number of bytes
2/3/4

4) Number of clocks
When W=0, 19 + n
when W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: uPD70116 even addresses
(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates right (including the CY flag) by the number of
bits equal to the number of bits in the CL register

the 8- or 16-bit memory location specified by the first

operand.
(mem8.716)
cY 157 » 0
7) Flag operation
T T T T T
v S Z AC P CYy
X

12-248

(5) Register multi-bit

1) Description format
RORC reg, imm8

2) Instruction format
7 o7 3 2 o7 0

1100000W11011lreg7 imm8]

3) Number of bytes
3

4) Number of clocks
7 + n (n: number of shifts)

5) Number of transfers of 16-bit words
None

6) Function
Rotates right (including the CY flag) the 8- or 16-bit
register specified by the first operand by the number
of bits specified by the 8-bit immediate data of the
second operand.

reg8/16
cy 15/1 M 0
7) Flag operation
T T 1 T T
\Y S 2 AC P Cy
U X

12-249

(6) Memory multi-bit

1) Description format
RORC mem, imm8

2) Instruction format

7 0 7 6 5 3 2 0 7 0
‘1 10000 GWIImod‘D i 1, mem { (disp-low)

7 [0
| Cdisp-nigh) i mm8

3) Number of bytes
3/4/5

4) Number of clocks
When wW=0, 19 + n
When W=1, 27 + n: uPD70108
uPD70116 odd addresses
19 + n: pPD70116 even addresses

(n: number of shifts)

5) Number of transfers of 16-bit words
2

6) Function
Rotates right (including the CY flag) the 8- or 16-bit
memory location addressed by the first operand by
the number of bits specified by the 8-bit immediate
data of the second operand.

(mem8,/16)
cY 15/17 . 0
7) Flag operation
i T T L{ 4
v S 2 AC P Ccy
U X

12-250

12.20 Subroutine Control Instructions

12.20.1 CALL (Call)

(1) Relative (same segment)

1) Description format
CALL near-proc

2) Instruction format
7 07 07 0

1110100 0[disp-low disp-high]

3) Number of bytes
3

4) Number of clocks
20: uPD70108
uPD70116 odd addresses
16: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
(SP - 1, SP - 2) « PC
SP « SP - 2
PC « PC + disp

Saves the PC to the stack and loads the 16-bit displace-
ment to the PC. This instruction enables calls

to any address within the current segment,

7) Flag operation
None

12-251

(2) Register (same segment)

1)

2)

3)

4)

5)

6)

7)

Description format
CALL regptrlé6

Instruction format
7 o7 3 2 0

T T
11111111{11010 rng

Number of bytes
2

Number of clocks
18: uPD70108

uPD70116 odd addresses
14: yPD70116 even addresses

Number of transfers of 16-bit words
1

Function

(SP - 1, SP - 2) « PC
SP « SP - 2

PC « regptrlé6

Saves the PC to the stack and loads the value of the
16-bit register specified by the operand to the PC.
This instruction enables calls to any address within

the current segment.

Flag operation

None

12-252

(3)

1)

2)

3)

4)

5)

6)

7)

Memory (same segment)

Description format
CALL memptrlé

Instruction format

7 0 7 6 5 3 2 [1]
fx 111111 llmodKO 10 mem;]

7 07 0
[(disp-low) l (disp-high)]

Number of bytes
2/3/4

Number of clocks
31: uPD70108

pPD70116 odd addresses
23: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

(sp - 1, SP - 2) « PC
SP « SP - 2

PC « (memptrlé)

Saves the PC to the stack and loads the contents of

the 16-bit memory (offset) addressed by the operand to

the PC. This instruction enables calls to any address

Flag operation

None

12-253

(4) Direct (external segment)

1) Description format
CALL far-proc

2) Instruction format

7 07 07 0
{l 001101 0{ offset-low % offset-high }
7 0o 7 0
[seg-low I seg-high

3) Number of bytes
5

4) Number of clocks
29: uPD70108
uPD70116 odd addresses
21: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
(SP - 1, SP - 2) « PS
(SP - 3, SP - 4) « PC
SP « SP - 4
SP « seg
PC « offset

Saves the PS and PC to the stack. Loads the fourth and
fifth bytes of the instruction to the PS and the
second and third bytes to the PC. This instruction
enables calls to any address in any segment.

7) Flag operation
None

12-254

(5) Memory (external segment)

1) Description format
CALL memptr32

2) Instruction format
7 0 76 5 3 2 0

l11111111lmod'011 mem}

T 07 0

I (disp-low) I (d%sp-high) l

3) Number of bytes
2/3/4

4) Number of clocks
47: uPD70108
uPD70116 odd addresses
31: uPD70116 even addresses

5) Number of transfers of 16-bit words
4

6) Function
(SP - 1, SP - 2) « PS
(Sp - 3, SP-4) « PC
SP « SP-4
PS « (memptr32 + 3, memptr32 + 2)
PC « (memptr32 + 1, memptr32)

Saves the PS and PC to the stack. Loads the higher two
bytes of the 32-bit memory addressed by the operand to
the PS and the lower two bytes to the PC. This
instruction enables calls to any address in any

segment.,

7) Flag operation
None

12-255

12.20.2 RET (Return from Procedure)

(1) Same segment

1) Description format
RET (no operand)

2) Instruction format

7 o

[1 1000011

3) Number of bytes
1

4) Number of clocks
19: uPD70108
uPD70116 odd addresses
15: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
PC « (SP + 1, SP)
SP « SP + 2

Restores the PC from the stack and is used for
returning from intra-segment calls. The assembler
automatically distinguishes this instruction from the
RET instruction of (3).

8) Description example
RET

12-256

(2)

1)

2)

3)

4)

5)

6)

7)

8)

SP jump (same segment)

Description format

RET pop-value

Instruction format
7 07 07 0

ll 100001 0| pop-value-low pop-value-high]

Number of bytes
3

Number of clocks
24: uPD70108

puPD70116 odd addresses
20: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

PC « (SP + 1, SP)
SP « SP + 2

SP « SP + pop-value

Restores the PC from the stack and adds the 16-bit pop
value specified by the operand. This instruction is
effective for jumping a desired number of parameters

when the parameters saved in the stack subsequently to the
PC become unnecessary. This instruction is used for
returning from intra-segment calls. The assembler automati-
cally distinguishes this instruction from the RET pop-

value instruction of (4).

Flag operation
None

Description example
RET 8

12-257

(3) External segment

1) Description format

RET (no operand)

2) Instruction format
7 0

1100101 1]

3) Number of bytes
1

4) Number of clocks
29: uPD70108
uPD70116 odd addresses
21: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
PC « (SP + 1, SP)
PS « (SP + 3, SP + 2)
SP « SP + 4

Restores the PC and PS from the stack and is used for
returning from inter-segment calls., The assembler
automatically distinguishes this instruction from the
RET instruction of (1).

7) Flag operation
None

8) Description example
RET

12-258

(4)

1)

2)

3)

4)

5)

6)

SP jump (inter-segment)

Description format

RET pop-value

Instruction format
7 07 07 0

110010 10| pop-value-low pop-value-highAJ

Number of bytes
3

Number of clocks
32: uPD70108

uPD70116 odd addresses
24: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function

PC « (SP + 1, SP)

PS « (SP + 3, SP + 2)
SP « SP + 4

SP « SP + pop-value

Restores the PC and PS from the stack and adds the
16-bit pop value specified by the operand to the SP.
This command is effective for jumping the SP value
when the parameters saved in the stack subsequently to
the PC and PS become unnecessary. This instruction is

13

and for
usclu LU4L

RET pop-value instruction of (2).

7) Flag operation

None

12-259

12.21

12, 21.

(1)

1)

2)

3)

4)

5)

6)

7)

Stack operation Instruction

1 PUSH (Push)

16-bit memory

Description format
PUSH memlé6

Instruction format
7 07 6 5 3 2 0

Il 111111 llnmd'l 1 0[mem J

7 07 0

L, (disp-low) [(disp-high) J

Number of bytes
2/3/4

Number of clocks
26: uPD70108

uPD70116 odd addresses
18: uPD70116 even addresses

Number of transfers of 16-bit words
2

Function
(SP - 1, SP = 2) « (memlé6)

SP « SP - 2

Saves the contents of the 16-bit memory location

addressed by the operand to the stack.

Flag operation

None

12-260

(2) 16-bit register

1) Description format
PUSH reglé6

2) Instruction format
7 3 2 0

01010 reg]

3) Number of bytes
1

4) Number of clocks
12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
(SP - 1, SP - 2) « reglé6

SP « SP - 2

Saves the 16-bit register specified by the operand to
the stack.

7) Flag operation

None

12-261

(3) Segment register

1) Description format
PUSH sreg

2) Instruction format
7 s 4 3 2 0

[o 00 sreg 1 10

3) Number of bytes
1

4) Number of clocks
12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
(SP - 1, SP - 2) <« sreg

SP « SP - 2

Saves the segment register specified by the operand to
the stack.

7) Flag operation
None

12-262

(4) Program status word

1) Description format
PUSH PSW

2) Instruction format
7 0

1001110 01

3) Number of bytes
1

4) Number of clocks
12: yPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
(SP - 1, SP - 2) « PSW
SP « SP - 2

Saves the PSW to the stack.

7) Flag operation

None

12-263

(5) Register set

1) Description format
PUSH R

2) Instruction format

T 0

0110000 OJ

3) Number of bytes
1

4) Number of clocks
67: uPD70108
uPD70116 odd addresses
35: uyPD70116 even addresses

5) Number of transfers of 16-bit words
8

6) Function
TEMP « SP
(SP-1, SP-2)+ AW
(sp-3, SP-4) « CW
(sP-5, SP-6) <« DW
(sp-7, SP-8) <« BW
(sP-9, SP-10) <« TEMP
(sp-11, SP-12) « BP
(sP-13, SP-14) « IX
(SsP-15, SP-16) « 1Y
SP «SP- 16

Ssaves eight 16-bit registers (AW, BW, CW, DW, SP, BP,
IX and 1Y) to the stack.

7) Flag operation

None

8) Description example
PUSH R
12-264

(6) 8-bit immediate data sign expansion

1)

2)

3)

4)

5)

6)

7)

Description format
PUSH imm8

Instruction format
7 07 0

01101010 imm8 J

Number of bytes
2

Number of clocks
11: uPD70108

uPD70116 odd addresses
7: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function
(SP-1, SP-2) « Sign expansion of imms8
SP « Sp-2

Expands the sign of the 8-bit immediate data described
by the operand and saves it as 16-bit data to the

stack addressed by the SP.

Flag operation

None

12-265

(7) 16-bit immediate data

1) Description format
PUSH immlé6

2) Instruction format
7 0o 7 07 0

01101000 imm16-1ow imml6-high J

3) Number of bytes
3

4) Number of clocks
12: uPD70108
uPD70116 odd addresses

8: uPD70116 even addresses

5) Number of transfers of 16-bit words

1
6) Function

(SP - 1, SP = 2) « immlé6
SP « sp - 2

Saves the 16-bit immediate data described by the operand
to the stack addressed by the SP.

7) Flag operation
None

12-266

12.21.2 POP (Pcp)

(1) 16-bit memory

1) Description format
POP memlé6

2) Instruction format
7 0 76 5 3 2 0

110001111]mod'ooo'mem]

7 07 0
LA, (disp-low) 1 (disp-high) 4]

3) Number of bytes
2/3/4

4) Number of clocks
25: uPD70108
uPD70116 odd addresses
17: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
(meml6) « (SP + 1, SP)

SP « SP + 2

Transfers the contents of the stack to the 16-bit

memory location addressed by the operand.

7) Flag operation
None

12-267

(2) 16-bit register

1) Description format
POP reglé6

2) Instruction format

7 3 2 0
[01011 reﬂ

3) Number of bytes
1

4) Number of clocks
12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
reglé « (SP + 1, SP)

SP « SP + 2

Transfers the contents of the stack to the 16-bit
register specified by the operand.

7) Flag operation
None

12-268

(3) Segment register

1) Description format
POP sreg

2) Instruction format

T s 4 3 2 0

[0 00 sregll 11

3) Number of bytes
1

4) Number of clocks
12: uPD70108
pPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
sreg « (SP + 1, SP)
SP « SP + 2

Transfers the contents of the stack to the segment
register (except for PS) specified by the operand.
External interrupts (NMI, INT) and single-step break will
not be acknowledged between this instruction and the next.

7) Flag operation
None

12-269

(4) Program status word

1) Description format
POP PSW

2) Instruction format
4 0

10011101

3) Number of bytes
1

4) Number of clocks
12: uPD70108
uPD70116 odd addresses
8: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
PSW « (SP +1, SP)
SP « SP + 2

Transfers the contents of the stack to the PSW.

7) Flag operation

12-270

(5) Register set

1) Description format
POP R

2) Instruction format
7 0

0110000 1]

3) Number of bytes
1

4) Number of clocks
75: uPD70108
uPD70116 odd addresses
43: uPD70116 even addresses

S) Number of transfers of 16-bit words
7

6) Function
IY « (SP + 1, SP)
IX « (SP + 3, SP + 2)
BP « (SP + 5, SP + 4)

BW « (SP + 9, SP + 8)
DW « (SP + 11, SP + 10)
CW « (SP + 13, SP + 12)
AW « (SP + 15, SP + 14)
SP « SP + 16

The contents of the stack are restored to the
following eight 16-bit registers: AW, BW, CW,
DW, BP, SP, IX and IY.

7) Flag operation

None

8) Description example
POP R
12-271

12.21.3 PREPARE (Prepare New Stack Frame)

1) Description format
PREPARE immlé6, imm8

2) Instruction fcrmat

7 07 0
L1 100100 o] imm1 6- 1 ow J

T 07 0
l imm16-high [inm8 |

3) Number of bytes
4

4) Number of clocks

When imm8=0, 13
When imm8>1, 22 + 20(imm8-1): uPD70108
uPD70116 odd addresses
18 + 12(imm8-1): uPD70116 even addresses

5) Number of transfers of 16-bit words

When imm8=0, none

When imm8>1, 1 + 2(imm8-1)

12-272

6) Function

(SP - 1, SP - 2) = BP

SP «- SP - 2

temp < SP

When imm8 > 0, repeat these operations "imm8-1" times :
(SP - 1, SP - 2) = (BP - 1, BP - 2)
SP= SP - 2
BP « BP - 2

and perform these operations:
(SP - 1, SP - 2) = temp } 2
SP< SP - 2

Then performs these operations:
BP < temp
SP « SP - immlé

When imm8=1, *1 is not performed,

When imm8=0, *1 and *2 are not performed.

This instruction is used to generate "stack frames"
required by the block structures of high-level
languages such as Pascal and Ada. The stack frame
includes a local variable area as well as pointers.
These frame pointers point to the frame containing the
variables that can be referenced from the current pro-
cedure.

This instruction copies frame-pointers to reserve the local
variable area and to enable global variable references.
The first operand (16-bit immediate data) specifies
(in bytes) the size of the local variable area. The
second operation (8-bit immediate data) specifies the
depth (or lexical level) of the procedure block.

The frame base address generated by this instruction
is set in the BP base pointer.

First the old BP value is save to the stack. This is
done so that BP of the calling procedure can be
restored when the called procedure terminates. The
frame pointer (BP value saved to the stack) that indi-
cates the range of variables that can be referenced by
the called procedure is placed on the stack. This

12-273

7)

range is always a value one less than the lexical
level of the procedure.

If the lexical level of a procedure is greater than 1,
the pointers of that procedure will also be saved on
the stack. This is so that the frame pointer of the
calling procedure can also be copied when frame
pointer copy is performed within the called proce-
dure.

Next the new frame pointer value is set in BP and the
area for local variables used by the procedure is
reserved in the stack. In other words, SP is decre-
mented only for the amount of stack memory required by

the local variables.

Flag operation
None

12-274

12.21.4 DISPOSE (Dispose a Stack Frame)

1) Description format
DISPOSE (no operand)

2) Instruction format
L4 0

Li 1001001

3) Number of bytes
1

4) Number of clocks
10: uPD70108
uPD70116 odd addresses
6: uPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
SP « BP
BP « (SP + 1, SP)
SP « SP + 2

Releases one frame of the stack frame generated by the
PREPARE instruction. A value that points to the pre-
ceding frame is loaded in BP and the bottom of the
frame value is loaded in SP.

7) Flag operation

2z

one
cne

12-275

12.22 Branch Instructions

12.22.1 BR (Branch)

(1)

1)

2)

3)

4)

5)

6)

7)

Relative (same segment)

Description format
BR near-label

Instruction format
7 07 07 0

{i 110100 It disp-low I disp-high

Number of bytes
3

Number of clocks
12

Number of transfers of 16-bit words

None

Function
PC « PC + disp

Loads the current PC value plus a 16-bit displacement
value to the PC. If the branch address is in the
current segment, the assembler automatically generates
this instruction.

Flag operation

None

12-276

(2) Short relative (same segment)

1)

2)

3)

4)

5)

6)

7)

Description format
BR short-label

Instruction format
7 07 0

[1 1101011 disp8 J

Number of bytes
2

Number of clocks
12

Number of transfers of l6-bit words

None

Function
PC + PC + ext-disp8

Loads the current PC value plus an 8-bit (actually,
sign-extended 16-bit) displacement value to the PC.
When the branch address is in the current segment
and within +127 bytes of the instruction, the

assembler automatically generates this instruction.

Flag operation

None

12-277

(3) Register (same segment)

1)

2)

3)

4)

5)

6)

7)

Description format
BR regptrl6

Instruction format

7 07 3 2 0

[} 111111111100 mgAJ

Number of bytes
2

Number of clocks
11

Number of transfers of 16-bit words
None

Function
PC « regptrlé

Loads the contents of the 16-bit register specified by
the operand to the PC. This instruction can branch to

any address in the current segment.

Flag operation
None

12-278

(4) Memory (same segment)

1) Description format
BR memptrlé

2) Instructicn format

7 0 756 5 3 2 0

|1 111111 llqmd 1 00 mem l

7 07 0

l (disp-1ow) | (disp-high) |

3) Number of bytes
2/3/4

4) Number of clocks
24: uPD70108
uPD70116 odd addresses

20: uyPD70116 even addresses

5) Number of transfers of 16-bit words
1

6) Function
PC « (memptrlé)

Loads the contents of the 16-bit memory location
addressed by the operand to the PC. It can branch to

any address in the current segment.

7) Flag operation

None

12-279

(5) Direct (external segment)

1)

2)

3)

4)

5)

6)

7)

Description format
BR far-label

Instruction format

7 [07 0
{1 110101 0! offset-low ! offset-high
7 [0

seg-low I seg-high]

Number of bytes
5

Number of clocks
15

Number of transfers of 1l6-bit words

None

Function
PC « offset
PS + seg

Loads the 16-bit offset data (second and third bytes
of the instruction) to the PC and the 16-bit segment
data (fourth and fifth bytes) to the PS. It can branch
to any address in any segment.

Flag operation
None

12-280

(6) Memory (external segment)

1) Description format
BR memptr32

2) Instruction format
7 07 6 5 3 2 0

{1 111111 l]mod‘l'o 1 mem]

7 o7 0
[(disp-1low) | (disp-high) l

3) Number of bytes
2/3/4

4) Number of clocks
35: uPD70108
uPD70116 odd addresses
27: uPD70116 even addresses

5) Number of transfers of 16-bit words
2

6) Function
PS « (memptr32 + 3, memptr32 + 2)
PC « (memptr32 +1, memptr32)

Loads the upper two bytes and lower two bytes of the
32-bit memory addressed by the operand to the PS and
PC, respectively. It can branch to any address in any

segment.

7) Flag operation
None

12-281

12.23 cConditional Branch Instructions
12.23.1 BV (Branch if Overflow)

1) Description format
BV short-label

2) Instruction format
7 07 ¢

f01110000] disp8 J

3) Number of bytes
2

4) Number of clocks
When v=1, 14
When v=0, 4

5) Number of transfers of 16-bit words

None

6) Function
When V=1, PC « PC + ext-disp8

When the V flag is 1, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can

branch to any address within £127 bytes of the instruction

in the current segment.

7) Flag operation
None

12-282

12.23.

1)

2)

3)

4)

5)

6)

7)

2 BNV (Branch if Not Overflow)

Description format
BNV short-label

Instructicon format
7 07 0

[0 1110001 disp8

Number of bytes
2

Number of clocks
When v=0, 14
When v=1, 4

Number of transfers of 16-bit words

None

Function
When v=0, PC « PC + ext-disp8

When the v flag is 0, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can

branch to any address within +127 bytes of the instruction
in the current segment.

Flag operation

None

12-283

12.23.3 BC/BL (Branch if Carry/Lower)

1) Description format
BC short-label
BL short-label

2) Instruction format
T 07 0

[01110010l disp8 J

3) Number of bytes
2

4) Number of clocks
When CyY=1, 14
When CY=0, 4

5) Number of transfers of l6-bit words
None

6) Function
When CY¥=1, PC « PC + ext-disp8

When the CY flag is 1, loads the current PC value plus

the 8-bit (actually, sign-extended 16-~bit)

displacement value to the PC. This instruction can

branch to any address within x127 bytes of the instruction
in the current segment.

7) Flag operation
None

12-284

12.23.4 BNC/BNL (Branch if Not Carry/Not Lower)

1)

2)

3)

4)

5)

6)

7)

Description format
BNC short-label
BNL short-label

Instruction format
7 [0

[0 1110011 disp8

Number of bytes
2

Number of clocks
When CY=0, 14
When CY=1, 4

Number of transfers of 16-bit words
None

Function
When CY=0, PC « PC + ext-disp8

When the CY flag is 0, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can

branch to any address within +127 bytes of the instruction
in the current segment.

Flag operation
None

12-285

12.23.5 BE/BZ (Branch if Equal/Zero)

1)

2)

3)

4)

5)

6)

7)

Description format

BE short-label or BZ short-label

Instruction format
7 07 0

01110100 disp8 AJ

Number of bytes
2

Number of clocks

When 2=1, 14
When 2=0, 4

Number of transfers of 16-bit words

None

Function
When Z=1, PC « PC + ext -disp8

When the 2 flag is 1, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can

branch to any address within %127 bytes of the instruction

in the current segment.

Flag pperation

None

12-286

12.23.

1)

2)

3)

4)

5)

6)

7)

6 BNE/BNZ (Branch if Not Equal/Not Zero)

Description format
BNE short-label or BNZ short-label

Instruction format
7 07 0

01110101 disp8]

Number of bytes
2

Number of clocks
when 2=0, 14
When 2=1, 4

Number of transfers of 16-bit words
None

Function
When 2=0, PC « PC + ext-disp8

When the z flag is 0, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can

branch to any address within %127 bytes of the instruction
in the current segment. '

Flag operation

None

12-287

12.23.7 BNH (Branch if Not Higher)

1)

2)

3)

4)

5)

6)

7)

Description format
BNH short-label

Instruction format

7 07
01110110 disp8 |

Number of bytes
2

Number of clocks
When CY V Z2=1, 14
When CY V 2=0, 4

Number of transfers of 16-bit words
None

Function
When CY V Z=1, PC <« PC + ext-disp8

When the logical sum of the CY and Z flags is 1, loads
the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within £127 bytes
of the instruction in the current segment.

Flag operation
None

12-288

12.23.8 BH (Branch if Higher)

1)

2)

3)

4)

5)

[>))
—

7)

Description format
BH short-label

Instruction format
7 07 0

01110111 disp8 J

Number of bytes
2

Number of clocks
When CY V Z2=0, 14

When CY V z2=1, 4

Number of transfers of 16-bit words

None

Function

When CY V 2=0, PC < PC + ext-disp8

When the logical sum of the CY and Zz flags is 0, loads
the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within +127 bytes
of the instruction in the current segment.

Flag operation
None

12-289

12.23.9 BN (Branch if Negative)

1) Description format
BN short-label

2) Instruction format

7 07
0111100?[disp8

3) Number of bytes
2

4) Number of clocks
When s=1, 14
When S=0, 4

5) Number of transfers of 16-bit words

None

6) Function
When S=1, PC « PC + ext-disp8

When the S flag is 1, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can branch
to any address within #127 bytes of the instruction in

the current segment.

7) Flag operation
None

12-290

12.23.10 BP (Branch if Positive)

1) Description format
BP short-label

2) Instruction format

7 0 7 0

01111001 disp8

3) Number of bytes
2

4) Number of clocks
When s=0, 14
When s=1, 4

5) Number of transfers of 16-bit words
None

6) Function
When S=0, PC « PC + ext-disp8

When the § flag is 0, loads the current PC value plus

the 8-bit (actually, sign~extended 16-bit)

displacement value to the PC. This instruction can branch
to any address within 127 bytes of the instruction in

the current segment.

7) Flag operation
None

12-291

12.23.

1)

2)

3)

4)

5)

6)

11 BPE (Branch if Parity Even)
Description format

BPE short-label

Instruction format

7 o7 Y

51111010 disp8 l

Number of bytes
2

Number of clocks
When P=1, 14
When P=0, 4

Number of transfers of 16-bit words

None

Function
Wwhen P=1, PC « PC + ext-disp8

When the P flag is 1, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can branch
to any address within +127 bytes of the instruction in

the current segment.

7) Flag operation

None

12-292

12.23.12 BPO (Branch if Parity 0dd)

1) Description format
BPO short-label

2) Instruction format
7 07 0

!T)llllOll disp8 J

3) Number of bytes
2

4) Number of clocks
When P=0, 14
When P=0, 4

5) Number of transfers of 16-bit words

None

6) Function
When P=0, PC « PC + ext-disp8

When the P flag is 0, loads the current PC value plus

the 8-bit (actually, sign-extended 16-bit)

displacement value to the PC. This instruction can branch
to any address within %127 bytes of the instruction in

the current segment.

7) Flag operation

None

12-293

12.23.

1)

2)

3)

4)

5)

6)

7)

13 BLT (Branch if Less Than)

Description format
BLT short-label

Instruction format
7 0T 0

001111100 disp 8

Number of bytes
2

Number of clocks
When S % v=1, 14
When S % v=0, 4

Number of transfers of 16-bit words

None

Function
When S % V=1, PC « PC + ext-disp8

When the exclusive-or of the S and V flags is 1, loads
the current PC value plus the 8-bit (actually, sign-
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within +127 bytes
of the instruction in the current segment. when the
conditions are unsatisfied, proceeds to the next
instruction.

Flag operation
None

12-294

12.23.

1)

2)

3)

4)

5)

6)

7)

14 BGE (Branch if Greater Than or Equal)

Description format
BGE short-label

Instruction format
[4 07 0

P)1111101 disp8 J

Number of bytes
2

Number of clocks
When s & v=0, 14
When S # v=1, 4

Number of transfers of 1l6-bit words

None

Function
When S ¥ v=0, PC « PC + ext-disp8

When the exclusive-or of the S and V flags is 0, loads
the current PC value plus the 8-bit (actually, sign-
extended l6-bit) displacement value to the PC. This
instruction can branch to any address within +127 bytes
of the instruction in the current segment. when the
conditions are unsatisfied, proceeds to the next
instruction.

Flag operation
None

12-295

12.23.

1)

2)

3)

4)

5)

7)

15 BLE (Branch if Less Than or Equal)

Description format
BLE short-label

Instruction format
7 0 7 0

0111111 0{ disp8 }

Number of bytes
2

Number of clocks
When (S ¥+ V) VvV 2=1, 14
When (S ¥ V) Vv 2=0, 4

Number of transfers of 16-bit words

None

Function
When (S ¥ V) V Z=1, PC « PC + ext-disp8

When the exclusive-or of the S and V flags and the
logical sum of that result and the Z flag is 1, loads
the current PC value plus the 8-bit (actually,
sign-extended 16-bit) displacement value to the PC.
This instruction can branch to any address within x127
bytes of the instruction in the current segment. When
the conditions are unsatisfied, proceeds to the next
instruction.

Flag operation
None

12-296

12.23.16 BGT (Branch if Greater Than)

1)

2)

3)

4)

5)

6)

7)

Description format
BGT short-label

Instruction format
7 0 7 0

01111111 disp8]

Number of bytes
2

Number of clocks
When (S % V)V 2=0, 14
When (S % V)V 2=1, 4

Number of transfers of 1l6-bit words

None

Function
When (S ¥ V) V 2=0, PC « PC + ext-disp8

When the exclusive-or of the S and V flags and the
logical sum of that result and the Z flag is 0, loads
the current PC value plus the 8-bit (actually,
sign-extended 16-bit) displacement value to the PC.
This instruction can branch to any address within +127
bytes of the instruction in the current segment. When
the conditions are unsatisfied, proceeds to the next

instruction,

Flag operation
None

12-297

12.23.

1)

2)

3)

4)

5)

6)

7)

17 DBNZNE (Decrement and Branch if Not Zero and Not
Equal)

Description format
DBNZNE short-label

Instruction format
7 0o 7 0

[11100000 disp8

Number of bytes
2

Number of clocks
When CW#0 and Z2=0, 14
When others, 5

Number of transfers of 16-bit words

None

Function
CW « CW - 1
When CW#0 and 2=0, PC « PC + ext-disp8

When the 16-bit register CW is decremented (-1) and

the resultant CW value is not 0 and the z flag is

cleared, loads the current PC value plus the 8-bit
(actually, sign-extended 16-bit) displacement value to

the PC. This instruction can branch to any address

within +127 bytes of the instruction in the current segment.
When the conditions are unsatisfied, proceeds to the

next instruction.

Flag operation

None

12-298

12.23.18 DBNZE (Decrement and Branch if Not Zero and Equal)

1) Description format
DBNZE short-label

2) Instruction format
1 0 7 0

11100001] disp8

3) Number of bytes
2

4) Number of clocks
When CW#0 and 2=1, 14
When others 5

5) Number of transfers of 16-bit words
None

6) Function
CW « CW - 1
When CW#0 and Z=1, PC « PC + ext -disp8

When the 16-bit register CW is decremented (-1) and

the CW is not zero and the Z flag is set, loads the
current PC value plus the 8-bit (actually, sign-

extended 16-bit) displacement value to the PC. This
instruction can branch to any address within +127 bytes of
the instruction in the current segment. When the con-
ditions are unsatisfied, proceeds to the next instruc-
tion,

7) Flag operation
None

12-299

12.23.

1)

2)

3)

4)

5)

6)

7)

19 DBNZ (Decrement and Branch if Not Zero)

Description format
DBNZ short-label

Instruction format
07 0

7
T
11190001 0 disp8 J

Number of bytes
2

Number of clocks
When CwW#0, 13
When Cw=0, 5

Number of transfers of 16-bit words
None

Function
CW « CWw - 1
When CW#0, PC « PC + ext-disp8

When the 16-bit register CW is decremented (-1) and

the CW value is not zero, loads the current PC value

plus the 8-bit (actually, sign-extended 16-bit)
displacement value to the PC. This instruction can branch
to any address within *127 bytes of the instruction in the
current segment. When the conditions are unsatisfied,
proceeds to the next instruction.

Flag operation
None

12-300

12.23.20 BCWz (Branch if CW equals Zero)

1)

2)

3)

4)

5)

6)

7)

Description format
BCWZ short-label

Instruction format
7 07 0

11100011 disp8 }

Number of bytes
2

Number of clocks
When Cw=0, 13
When CW#0, 5

Number of transfers of 16-bit words

None

Function
When CW=0, PC « PC + ext-disp8

When the 16-bit register CW is 0, loads the current PC
value plus the 8-bit (actually, sign-extended 16-bit)
displacement value to the PC. This instruction can branch
to any address within %127 bytes of the instruction in the
current segment. When the conditions are unsatisfied,
proceeds to the next instruction.

Flag operation
None

12-301

12.24 Break Instructions

12.24.1 BRK (Break)

¢1) Vector 3

1)

2)

3)

4)

5)

6)

Description format
BRK 3

Instruction format
7 0

[;71 001100

Number of bytes
1

Number of clocks
58: uPD70108

uPD70116 odd addresses
38: uPD70116 even addresses

Number of transfers of 16-bit words
5

Function

(SP-1, SP-2) « PSW
(sp-3, SP-4) « PS
(SP-5, SP-6) « PC
SP « SP - 6

IE « O

BRK « 0

PC « (OODH, OOCH)
PS « (OOFH, OOEH)

Saves the PSW, PS, and PC to the stack and resets (to
0) the IE and BRK flags. Then loads the lower two
bytes and higher two bytes of vector 3 of the
interrupt vector table to the PC and PS, respectively.

12-302

7) Flag operation

IE BRK

12-303

(2) Immediate data

1)

2)

3)

4)

5)

6)

Description format
BRK imm8 (#3)

Instruction format
7 07

11001101

imm8

Number of bytes
1

Number of clocks
58: uPD70108

pPD70116 odd addresses
38: uPD70116 even addresses

Number of transfers of 16-bit words

5

Function

(SP-1, SP-2) <« PSW
(SpP=-3, SP-4) +« PS
(Sp-5, SP-6) « PC
SP « SP - 6

IE « O

BRK « 0

PC « (imm8 x 4 + 1,
PS « (imm8 x 4 + 3,

Saves the PSW, PS,

imm8 x 4)
imm8 x 4 + 2)

and PC to the stack and resets (to

0) the IE and BRK flags. Then loads the lower two bytes
and upper two bytes of the interrupt vector table

(4 bytes) specified by the 8-bit immediate data to

the PC and PS, respectively.

12-304

7) Flag operation

IE

T

BRK

0

0

12-305

12.24.2 BRKV (Break if Overflow)

1) Description format

BRKV (no operand)

2) Instruction format
7 0

1100111 01

3) Number of bytes
1

4) Number of clocks
When v=1, 60: uPD70108
uPD70116 odd addresses
40: uPD70116 even addresses
When v=0, 3

5) Number of transfers of 16-bit words
5

6) Function
When v=1
(SP-1, SP-2) « PSW
(Sp-3, SP-4) + PS
(spP-5, SP-6) <« PC
SP « SP - 6
IE « O
BRK « 0
PC « (011H, O0l0H)
PS « (013H, 012H)

When the V flag is set, saves the PSW, PS, and PC to
the stack and resets (to 0) the IE and BRK flags.
Then loads the lower two bytes and upper two bytes of
vector 4 of the interrupt vector table to the PC and
PS, respectively. When the vV flag is reset, proceeds
to the next instruction.

12-306

7) Flag operation

IE

!

BRK

0

8) Description example

BRXV

12-307

12.24.

1)

2)

4)

5)

6)

7)

8)

3 RETI

Description format

RETI

Instruction format

7

(no operand)

0
11001111

Number of bytes
1

Number of clocks

39: puPD70108

(Return from Interrupt)

uPD70116 odd addresses
27: uPD70116 even addresses

Number of transfers of 16-bit words

3

Function

PC « (SP + 1, SpP)
SP + 2)
SP + 4)

PS « (SP + 3,
PSW « (SP + 5,
SP « SP + 6

Restores the contents of the stack to the PC,
PSW. Used for return from interrupt

Flag operation

PS,
processing.

and

MD v DIR IE BRK S 2 AC P CY
R R R R R R R R R

Description example

RETI

12-308

12.24.4 BRKEM (Break for Emulation)

1) Description format
BRKEM imm8

2) Instruction format

7 07 0 7 0

0000111 1[/11111111 imm8 |

3) Number of bytes
3

4) Number of clocks
58: uPD70108
uPD70116 odd addresses
38: uPD70116 even addresses

5) Number of transfers of 16-bit words
5

6) Function
(SP-1, SP-2) « PSW
(SP-3, SP-4) <« PS
(sSp-5, SP-6) « PC
SP « SP - 6
MD « 0
PS <+ (imm8 x 4 + 3, imm8 x 4 + 2)

PC « (imm8 x 4 + 1, imm8 x 4)

This instruction starts the emulation mode. Saves
the PSW, PS, and PC and resets (to 0) the MD.

Then, it jumps to the emulation address
addressed by the interrupt vector specified by the
8-bit immediate data described by the operand. After
fetching the instruction code of the jumped interrupt
service routine (for emulation), the CPU interprets
and executes the code as the instruction of the

12-309

uPD8080AF. Either the RETEM or CALLN instruction is used
to return from the emulation mode to the naEive mode
(uPD70108/70116) .

7) Flag operation

BRK

12-310

12.24.5 CHKIND (Check Index)

1) Description format
CHKIND regl6, mem32

2) Instruction format

7 07 6 5 3 2 0
[0 110001 OLTodr reg, mem}
1 07 0
I (disp-1low) ‘ (disp-high) l

3) Number of bytes
2/3/4

4) Number of clocks
When interrupt condition is fulfilled,
81-84: uPD70108
uPD70116 odd addresses
53-56: uPD70116 even addresses

When interrupt condition is not fulfilled,
26: uPD70108
uPD70116 odd addresses
18: uPD70116 even addresses

5) Number of transfers of 16-bit words

When interrupt condition is fulfilled, 7
When interrupt condition is not fulfilled, 2

12-311

6) Function
When (mem32) > reglé or (mem32 + 2) < regl6i
(sp-1, SP-2) « PSW
(Sp-3, SP-4) + PS
(spP-5, PS-6) « PC
SP « SP - 6
IE « O
BRK « O
PS « (23, 22)
PC « (21, 20)

Memory
Upper limit //;//// //
15 0
Array element mem32+2 (upper limit)
mem3 2 (lower limit)
Lower limit
) S)
Va4

This instruction is used to check whether the index
value that specifies the data element is in the defi-
nition region of the data array. It initiates BRK 5
when the index exceeds the definition region. The
definition region should be set beforehand in the two
words (first word for the lower limit and second word
for the upper limit) of the memory. The object of the
index value is the register (random 16-bit register)

used by the array handling program.

7) Flag operation
When interrupt condition is fulfilled,

IE BRK
0 0

When interrupt condition is not fulfilled,
None

12-312

12.25 CPU Control Instructions
12.25.1 HALT (Halt)

1) Description format
HALT (no operand)

2) Instruction format
7 0

{1 111010 OJ

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Sets at the halt state.
The halt state is released by either of the following

three sources:
RESET input
NMI input

INT input

7) Flag operation
None

8) Description example
HALT

12-313

12.25.2 POLL (Poll and wait)

1) Description format
POLL (no operand)

2) Instruction format

7 0

10011011

3) Number of bytes
1

4) Number of clocks
2 +5 xn
n: Number of POLL pin sampling

5) Number of transfers of 16-bit words
None
6) Function
Keeps the CPU in the wait state until the POLL pin

becomes active (low level).

7) Flag operation
None

8) Description example
POLL

12-314

12.25.3 DI (Disable Interrupt)

1)

2)

3)

4)

5)

6)

7)

8)

Description format
DI (no operand)

Instruction format

7 0
L£,1 111010

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None

Function
IE « O

Resets the IE flag and disables the external maskable
interrupt input (INT). This instruction does not
disable external non-maskable interrupt input (NMI)
and software interrupt instruction.

Flag operation

IE
0

Description example
DI

12-315

12.25.4 EI (Enable Interrupt)

1) Description format

EI (no operand)

7 [

f
111111011

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words
None

6) Function
IE « 1

Sets the IE flag and enables external maskable
interrupt input (INT). The system does not

enter the interrupt—-enable state until executing the
instruction immediately after the EI.

7) Flag operation

IE
1

8) Description example
EI

12-316

12.25.5 BUSLOCK (Bus Lock Prefix)

1) Description format
BUSLOCK (no operand)

2) Instruction format
7 0

(; 1110000

3) Number of bytes
1

4) Number of clocks
2

5) Number of transfers of 16-bit words

None

6) Function
Outputs the buslock signal (BUSLOCK) for the
uPD70108/70116 of a large scale mode (S/LG=0) con-
figuration while the instruction immediately after the BUSLOCK
instruction is being executed.
When BUSLOCK instruction is used for a block operation
instruction with repeat prefix, BUSLOCK signal is kept
active (low level) until the end of the block operation
instruction when BUSLOCK instruction is executed in the
small-scale mode (S/LG=1), then BUSLOCK signal is not
output.
In the large-scale mode, hold request is inhibited during
BUSLOCK signal is active.
Accordingly BUSLOCK instruction is effective for the case
when program doesn't like to acknowledge a hold request
during block operations.

7) Flag operation
None

8) Description example
BUSLOCK
REP
MOVBKB 12-317

12.25

(1)

1)

3)

4)

5)

6)

7)

.6 FPOl (Floating Point Operation 1)

Register

Description format
FPOl fp-op

Instruction format

T 3 2 0 7 6 5 3 2 0

1101 1XXX[11YYYZZZ

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

This instruction is used for the floating point arith-
metic chip to be connected externally. When the CPU
fetches this instruction, it leaves arithmetic pro-
cessing to the operation chip. When the operation chip
(a co-processor) monitors this instruction, it treats
the instruction as one it has been given and executes
it.

Flag operation

None

12-318

(2) Memory

1)

4)

5)

6)

Description format

FPOl fp-op,mem

7 3 2 0 7 6 5 3 2 0

1101 lxXXXiYmod‘YYY‘ mem]

7 0 7 0
l (disp-low) ‘ (disp-high) 1

Number of bytes
2/3/4

Number of clocks
15: uPD70108

uPD70116 odd addresses
1l: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

data bus <« (mem)
This is the instruction for the externally connected,

floating point arithmetic chip. When the CPU fetches
this instruction, it leaves arithmetic processing to
the operating chip and carries out auxiliary pro-
cessing (calculation of effective address, generation
of physical address and start of memory read cycle)
as necessary.

When the operating chip (acting as co-processor)
monitors this instruction, it treats the instruction as
intended for itself and executes it. In this case,
depending on the type of instruction, the operating
chip selects either the address information of the
memory read cycle started by the CPU or both the
address and read data. The CPU does not use the

read data on the data bus in the memory read cycle

Which has been initiated by the CPU.

12-319

7) Flag operation

None

12-320

12.25.7 FPO2 (Floating Point Operation 2)

(1)

1)

2)

3)

4)

5)

6)

7)

Register

Description format
FPO2 fp-op

Instruction format

7 0 7 6 5 3 2 0

T T
011001 1X(11YYYZZZ

Number of bytes
2

Number of clocks
2

Number of transfers of 16-bit words

None

Function

This instruction is used for an externally connected,
floating point arithmetic chip. When the CPU fetches
this instruction, it leaves processing to the operating
chip. When the operating chip (acting as co-processor)
monitors this instruction, it interprets the instruc-
tion as intended for itself and executes it.

Flag operation
None

12-321

(2) Memory

1)

2)

3)

4)

5)

6)

Description format

FPO2 fp-op, memn

Instruction format
7 07 6 5 3 2 0

[0110011x|modYYY mem‘J

7 07 0

((disp-low) L (disp-high) j

Number of bytes
2/3/4

Number of clocks
15: uyPD70108

uPD70116 odd addresses
11: uPD70116 even addresses

Number of transfers of 16-bit words
1

Function

data bus « (mem)

This is the instruction for an externally connected,
floating point arithmetic chip. When the CPU fetches
this instruction, it leaves arithmetic processing to
the arithmetic chip and carries out auxiliary pro-
cessing (calculation of effective address, generation
of physical address and start of memory read cycle)
as necessary.

When the operating chip (acting as co-processor)
monitors this instruction, it treats the instruction as
intended for itself and executes it. In this case,
depending on the type of instruction, the operating
chip selects either the address information of the
memory read cycle started by the CPU or both the
address and read data.

12-322

7) Flag operation

None

12-323

12.25.8 NOP (No Operation)

1) Description format

NOP (no operand)

2) Instruction format
7 0

—
LE 0010000

3) Number of bytes
1

4) Number of clocks
3

5) Number of transfers of 16-bit words

None

6) Function
Does nothing for three clocks.

7) Flag operation

None

8) Description example
NOP

12-324

12.26

1)

2)

3)

4)

5

~

6)

7)

8)

Segment override prefix

Description format
DSO:
DS1:
PS:
SS:

Instruction format
7 s 4 3 2 [}

001 sregl 10

Number of bytes
1

Number of clocks
2

Number of transfers of 16-bit words

None

Function

It appended to the operand and specifies the segment

register to be used for access of a memory operand
expecting segment-override.

Programmer can define the segment override by assembler

directive "ASSUME" without describing the segment override

prefix directly (See Assembler Operating Manual) .

Flag operation
None

Description example
REP MOVBKB BYTE_VAR, SS : BYTE VAR

12-325

12.27 Emulation Mode Instructions

12.27.1 CALLN (Call Native)

1)

2)

4)

5)

6)

Description format
CALLN imm8

Instruction

7

format
07

0

7

Ll 11011011 1101101

imm8

Number of bytes

3

Number of clocks

58:

38:

Number of transfers of 16-bit words

5

uPD70108
uPD70116 odd addresses
uPD70116 even addresses

Function

(sp-1, sp-2)
(sp-3, sp-4)
(sp-5, SP-6)

SP
MD
PS
PC

«

s

-

PS - 6
1

(imm8 x
(imm8 x

+ PSW

4 + 3,
4 + 1,

imm8 x 4 + 2)
imm8 x 4)

12-326

When this command is executed in the emulation mode
(it is interpreted as an uPD8080AF command), the CPU
saves the PS, PC, and PSW to the stack (MD=0 is also
saved). Then the MD flag is set to 1. The interrupt
vector specified by the 8-bit immediate data of the
operand is loaded into PS and PC. This command
allows the user to call a native mode interrupt
routine from the emulation mode.

The RETI command is used to return to esmulation mode
from the interrupt routine.

7) Flag operation

MD

12-327

12.27.2 RETEM (Return from Emulation)

1) Description format
RETEM

2) Instruction format

7 07
1
t1101101'11111101

3) Number of bytes
2

4) Number of clocks

39: uPD70108
uPD70116 odd addresses
27: uPD70116 even addresses

5) Number of transfers of 16-bit words
3

6) Function

PC « (SP + 1, SP)

PS « (SP + 3, SP + 2)
PSW « (SP + 5, SP + 4)
SP « SP + 6

When the RETEM command is executed in the emulation
mode (it is interpreted as a uyPD808OAF command), the
CPU restores the PS, PC and PSW saved by the BRKEM
command, in the same manner as when returning from
interrupt processing. The state of the MD flag (i.e.,
1) save by the BRKEM command are also restored,
causing the CPU to return to native mode ((uPD70108/

70116).

12-328

7) Flag operation

MD Vv DIR

R R R

12-329

Chapter

The uPD70108/70116 is
native and emulation.

executes instructions

13 yPD808OAF Emulation

provided with two CPU operation modes:
In native mode, the uPD70108/70116

specifically intended for the two

microprocessors. In emulation mode, the microprocessors

execute the instruction set for the uPD808OAF.

These modes are selected by an instruction specially

provided for the microprocessors or by using an interrupt.
The most significant bit of the PSW is mode (MD) flag that

controls the mode selection.

13.1 From Native to Emulation Mode

Two instructions cause the mode to be changed from the

native to the emulation mode: BRKEM (Break for Emulation)

and RETI (Return from Interrupt).

13.1.1 BRKEM imm8 instruction

This is a basic instruction that starts the emulation

mode. It performs the same operation as a normal

interrupt instruction (BRK) except that the BRKEM imm8

instruction resets

the mode flag.

Therefore, the BRKEM imm8 instruction saves the contents
of the PSW, PS, and PC and resets (to 0) the interrupt

enable (IE), break

(BRK), and MD flags. The segment base

of an interrupt vector specified by an operand is loaded

to a segment register (PS) and the offset is loaded to

the program counter (PC).

The emulation mode

started in this way to process an

interrupt (when MD=0) executes the program in the

6 4K-byte segment area specified by the contents of the

PS, starting from the address indicated by the contents

of the PC. The instruction code fetched at this point is

interpreted as the

executed (see Fig.

instruction of the yPDB808OAF and
13-1).

imm8Xx4+2

imm8Xx4

Fig.

PC

Memory
PS stack area t
PSwW
===
0 —— MD!
Interrupt ————— S
Vector table H PSW

Segment base

Offset

+

13-1 Mode shift

Native mode
Register set

Emulation mode
Register set

(Native mode)

(Emulation mode)

by BRKEM Instruction

13-2

13.1.2 RETI instruction
This instruction is generally used when returning program
execution of the CPU to the main routine from an
interrupt routine started by an external interrupt or BRK
instruction. When the contents of the PSW are restored
along with the contents of the PS and PC by the RETI
instruction, the status of the mode (MD) flag (i.e., 0),
which was also saved when the mode was changed from emu-
lation to native, is also restored. This restored MD flag
allows the CPU to be set in emulation mode again (see Fig.
13-2). For this reason, if the RETI instruction is exe-
cuted in native mode at the end of the interrupt routine
that has been started by an interrupt instruction (CALLN)
or by an external interrupt while the CPU is in emulation

mode, the CPU can reenter the emulation mode.

PC
Memory stack area PS
' I
o FLAG
|
Native mode Emulation mode
register set register set

Fig. 13-2 Mode Shift by RETI Instruction

13-3

13.2 From Emulation Mode to Native Mode
The following signals and instructions are used to change
the mode from emulation to native.
1) RESET input
2) MMI or INT input
3) CALLN (Call Native) instruction
4) RETEM (Return from Emulation) instruction

13.2.1 RESET input
When the RESET signal is input, a reset operation is
performed on the CPU the same as in native mode. The

emulation in progress will be aborted.

13.2.2 NMI or INT input
When the NMI or INT signal is input, the interrupt
process is performed the same as in native mode.
Program execution of the CPU will return to the main
routine from the interrupt routine in native mode.
From this native mode, the CPU can enter the emulation
mode by executing the RETI instruction (see Fig. 13-3).

13.2.3 CALLN imm8 instruction
This instruction is exclusively used when the emulation
mode that is assigned with undefined instruction code of
the uPD8080OAF is set. If the CALLN instruction is
executed in emulation mode, it functions the same as
the BRK instruction in native mode and causes the CPU
to save the contents of the PS, PC, and PSW to the stack
area (at this point, MD=0 is saved), to reset the IE and
BRK flags to 0, to set the mode flag (MD) to 1, and to
load the setgment base of an interrupt vector to the
segment register (PS) and the offset to the program

counter (PC) (see Fig. 13-3).

13-4

when the RETI instruction is executed at the end of the

interrupt routine, program execution of the CPU can be

returned to the main routine in emulation mode from

the interrupt routine in native mode started by the

CALLN instruction.

Using this function, the program for the uPD70108/70116
can be run while the program of the uPD808OAF is being

executed and the result of the program execution of the

uPD70108/70116 can be used for a required purpose.

Memory stack area

Interrupt vector table

PS

PC

Segment base

Fig. 13-3 Mode shift by NMI, INT Input and

Offset

Native mode
register set

Emulation mode

register set

13-5

CALLN Instruction

13.2.4 RETEM instruction

This instruction is exclusively used when the emulation

mode that is assigned with the undefined instruction code
If the RETEM instruction is

of the uPD808OAF is set,

executed in emulation mode,

program execution of the

CPU will return from the interrupt routine to the main

routine, Conseguently, the contents of the PS, PC, and

PSW are restored and the CPU reenters the native mode. At

this time, the MD flag contents (i.e.,

which have

been saved to the stack by the BRKEM instruction, are

restored. This restoration causes the CPU to be set in

native mode (see Fig. 13-4).

PC

PS

PSW

Memory stack area

Native mode
register set

Emulation mode

register set

(Native mode)

(Emulation mode)

Fig. 13-4 Mode shift by RETEM Instruction

13-6

13.3 Emulation Mode
When the mode is changed from native to emulation or vice
versa, the statuses in the CPU are passed from one
mode to another as shown in Fig. 13.5.
The lower 8 bits of the AW register and both the lower
and higher 8 bits of the BW, CW, and DW registers of the
uPD70108/70116 play the roles of the accumulator and six
general-purpose registers of the uPD8080AF.
The lower 8 bits of the PSW of the uPD70708/70116 play
the roles of the uPD8080AF flags. These flags correspond
to the lower 8 bits of the PSW.

TTTAH
A AL _
B CH r sp a
et T 4
C CL C O IX !
D . DH " Ty
e —— 4
E DL I ___Ss 1
H BH | DS1
L BL | DSO

| PSW]
I PC]
L{ PS
(Emulation mode) (Native mode)

Fig. 13-5 Correspondence of Registers

9 8 7 6 5 4 3 2 1 0
lIE[BRKl lAC[)CYJ PSW

b,

/2]
N
o

o
[
|

5 4 3 2 1 o0
ls[z[olAcl]c|FLAG

o
o
—

Fig. 13-6 Correspondence Between the PSW and Flags

13-7

The SP register serves as the stack pointer of the
uPD8080AF in native mode while the BP register acts

as the stack pointer in emulation mode. In this way,

the uPD70108/70116 employs independent stack pointers and
secures stack areas respectively used in each mode.

Using independent stack pointers this way prevents acci-
dents such as destruction of the contents of a stack
pointer in one mode due to misoperation of the stack
pointer in the other mode.

The AH, SP, IX, and IY registers and the four segment
registers (PS, SS, DSO, and DS1) are not affected by the
emulation mode when they operate in native mode.

In emulation mode, the segment base of the program is
determined by the PS register whose contents have been
determined by an interrupt vector before the CPU has
entered the emulation mode. The segment base of the
memory operands (including the stack) is determined by
the DSO register whose contents the programmer determines
before the CPU enters the emulation mode.

The bus hold function (available by the hold request/
acknowledge/signal) and standby function (available when
the HLT instruction is executed) can be used in emulation
mode in the same way as the native mode.

Even in emulation mode, the uPD70108/70116 does operate
in terms of its hardware. Therefore the input/output
operations between the uPD70108/70116 and the peripheral
circuits or the memory are exactly the same as those
performed in native mode. The BUSLOCK output or POLL
input signal that is operated by a uPD70108/70116

instruction is not performed,however.

Whether the external circuits are in emulation mode can
be checked by confirming that the processor status PS3
signal output during a uPD70108/70116 bus cycle has
become high (this signal is always at low level in the

native mode).
Fig. 13-7 shows mode shift operation of the CPU.

Bus hold
Standby mode

RESET,NMI, INT

HALT

RESET,
NMI, INT

Native mode

INT(DI)
HLT

Emulation mode

Suppose the CPU has entered the standby mode frgm the
emulation mode. The CPU can reenter the emulatién mode
when the INT signal is input while the interrupt is
disabled and restart program execution beginning with the
instruction next to the HLT instruction. If the RESET or
NMI signal is input instead of the INT signal, or if the
INT signal is input while the interrupt is enabled, the
CPU will enter the native mode from the standby mode.

If this happens, the CPU can enter the emulation mode
from the native mode, in other words, from the MMI or INT
interrupt routine in native mode, through execution

of the RETI instruction.

If the CPU has entered the standby mode from the native
mode, the CPU can reenter the native mode by input of the
RESET, NMI, or INT signal regardless of whether the
interrupt is disabled or enabled.

13-10

Appendix A List of uPD70108/70116 Instruction Mnemonics

ADD Add

ADD4S add Nibble String

ADDC Add with Carry

ADJ4A Adjust Nibble Add

ADJ4S Adjust Nibble Subtract
ADJBA Adjust Byte Add

ADJBS Adjust Byte Subtract

AND And

BC Branch if Carry

BCWZ Branch if CW equals Zero
BE Branch if Equal

BGE Branch if Greater Than or Equal
BGT Branch if Greater Than
BH Branch if Higher

BL Branch if Lower

BLE Branch if Less Than or Equal
BLT Branch if Less Than

BN Branch if Negative

BNC Branch if Not Carry

BNE Branch if Not Equal

BNH Branch if Not Higher

BNL Branch if Not Lower

BNV Branch if Not Overflow
BNZ Branch if Not Zero

BP Branch if Positive

BPE Branch if Parity Even
BPO Branch if Parity 0Odd

BR Branch

BRK Break

BRKEM Break for Emulation

BRKV Break for Overflow
BUSLOCK Bus Lock

BV Branch if Overflow

BZ Branch if Zero

CALL Call

CALLN Call Native mode

CHKIND Check Index

CLR1 Clear Bit

CMP Compare

CMP4S Compare Nibble String
CMPBK Compare Block

CMPBKB Compare Block Byte
CMPBKW Compare Block Word

CMPM Compare Multiple

CMPMB Compare Multiple Byte
CMPMW Compare Multiple Word
CVTBD Convert Binary to Decimal
CVTBW Convert Byte to Word
CVTDB Convert Decimal to Binary
CVTWL Convert Word to Long Word
DBNZ Decrement and Branch if Not Zero
DBNZE Decrement ‘and Branch if Not Zero and Equal
DBNZNE Decrement and Branch if Not Zero and Not Equal
DEC Decrement

DI
DISPOSE
DIV
DIVU
DSO0:
DS1:
EI
EXT
FPOl
FPO2
HALT
IN
INC
INM
INS
LDEA
LDM
LDMB
LDMW
MOV
MOVBK
MOVBKB
MOVBKW
MUL
MULU
NEG
NOP
NOT
NOT1
OR
ouT
OoUT™
POLL
POP
PREPARE
PS:
PUSH
REP
REPC
REPE
REPNC
REPNE
REPNZ
REPZ
RET
RETEM
RETI
ROL
ROL4
ROLC
ROR
ROR4
RORC
SET1
SHL
SHR
SHRA

Disable Interrupt

Dispose

Divide Signed

Divide Unsigned

Data Segment 0

Data Segment 1

Enable Interrupt

Extract Bit Field

Floating Point Operation 1
Floating Point Operation 2

Halt

Input

Increment

Input Multiple

Insert Bit Field

Load Effective Address

Load Multiple

Load Multiple Byte

Load Multiple Word

Move

Move Block

Move Block Byte

Move Block Word

Multiply Signed

Multiply Unsigned

Negate

No Operation

Not

Not Bit

Or

Output

Output Multiple

Poll and wait

Pop

Prepare

Program Segment

Push

Repeat Block Operation

Repeat Block Operation While Carry
Repeat Block Operation While Equal
Repeat Block Operation While Not Carry
Repeat Block Operation While Not Equal
Repeat Block Operation While Not Zero
Repeat Block Operation While Zero
Return

Return from Emulation

Return from Interrupt

Rotate Left

Rotate Left Nibble

Rotate Left with Carry

Rotate Right

Rotate Right Nibble

Rotate Right with Carry

Set Bit

Shift Left Logical

shift Right Logical

Shift Right Arithmetic

A-2

SS:
ST
STMB
STMW
SUB
SUB4S
SUBC
TEST
TEST1
TRANS
TRANSB
XCH
XOR

Stack Segment

Store Multiple
Store Multiple Byte
Store Multiple Word
Subtract

Subtract Nibble String
Subtract with Carzy
Test

Test Bit

Translate

Translate Byte
Exchange
Exclusive-Or

Appendix B

Index of uPD70108/70116 Instructions

(in Alphabetical order)

Instruction ’ Page Instruction i Page

ADD reg,reg 12-54 | BNC short-label 12-285
mem, reg 12-55 | BNE 4 12-287

reg ,mem 12-56 |BNH # 12-288

reg, imm 12-57 | BNL “ 12-285

mem, i mm 12-58 | BNV 4 12-283

acc, imm 12-59 | BNZ . 12-287

ADD4S 12-79 |BP " 12-291
ADDC reg.reg 12-60 |BPE " 12-292
mem,reg 12-61 |BPO " 12-293

reg,mem 12-62 |BR near-label 12-276

reg, imm 12-63 short-label 12-277

mem, i mm 12-64 regptrl6 12-278

acc, imm 12-65 memptrlé 12-279

ADJ4A 12-128 far-label 12-280
ADJ4S 12-130 memptr32 12-281
ADJBA 12-127|BRK 3 12-302
ADIJBS 12-129 imm8 12-304
AND reg,reg 12-151| BRKEM imm8 12-309
mem,reg 12-152| BRKV 12-306

reg,mem 12-153|BUSLOCK 12-317

reg, imm 12-154|BV short-label 12-282

mem, i mm 12-155|BZz ” 12-286

acc, imm 12-157|CALL near-proec 12-251

BC short-label 12-284 regptrlé 12-252
BCWZ 4 12-301 memptrlé 12-253
BE 4 12-286 far-proc 12-254
BGE Il 12-295 memp tr32 12-255
BGT " 12-297|CALLN imm8 12-326
BH " 12-289 |CHKIND regl6,mem32 12-311
BL ” 12-284 |[CLR1 reg8,CL 12-189
BLE /’ 12-296 mem8,CL L2-190
BLT ” 12-294 regl6,CL 112-191
BN " L2-290 mem16,CL L2-192

B-1

Instruction page Instruction page
CLRI1 regl, imm3 12-193{DIVU mem8 12-113
mem3, imm3 12-194 reglf 12-115
regl6, imm4d 12-195 meml 6 12-117
meml§, imm4 12-196|pso0: 12-325
cYy 12-197|DS1: 12-325
DIR 12-198|E1 12-316
cMpP reg,reg 12-135 EXTF regd,reg8 12-42
mem, reg 12-136 reg8, immd 12-44
reg,mem 12-137 |FPO1 fp-op 12-318
reg, imm 12-138 fp-op,mem 12-319
mem, imm l2-139 |FPO2 fp-op 12-321
ace, imm 12-140 fp-op mem 12-322
CMP4S 12-83 |HALT 12-313
CMPBK dst-block,sre=block {12-30 |IN acc, imm8 12-46
CMPBKB 12-390 ace,DW 12-47
CMP BKW 12-30 |INC reg8 12-89
CMPM dst-block 12-32 mem 12-90
CMPMB 12-32 reglé 12-91
CMPMW 12-32 |INM dst-block,DW 12-50
CVTBD 12-131{INSF reg8,reg8 12-38
CVTBW 12-133 reg8, imm4 12-40
cvTDB 12-13211pga regl6,meml6 12-16
CVTWL 12-134|LDM sre-block 12-34
DBNZ short-label 12-300|LDMB 12-34
DBNZE ’ 12-299/LDMW 12-34
DBNZNE ’ 12-298|{MOV reg,reg 12-1
DEC reg8 12-92 mem,reg 12-2
mem 12-93 reg,mem 12-3
reglé 12-94 mem, imm 12-4
DI 12-315 reg, imm 12-5
DISPOSE 12-275 acc,dmem 12-6
DIV reg8 12-119 dmem, acec 12-7
mem8 12-121 sreg,reglb 12-8
reglé 12-123 sreg,meml6 12-9
meml 6 12-125 reglb,sreg 12-10
DIVU reg8 12-111 meml6,sreg 12-11

B-2

Instruction page Instruction page
MOVBK dst-block,sre=block |12-28 |OUT DW,ace 12-49
MOV BKB 12-28 |0UTM DW, src-block 12-52
MOV BRKW 12-28 {POLL 12-314
MUL reg8 12-100ipop meml § 12-267

mem8 12-101 reglb 2-268
reglé 12--102 sreg 12-269
meml6 12-103 PSW 12-270
reglb,reglf, immg 12-105 R 12-271
regl6,meml6, immsg 12-107|PREPARE imml6,imm8 12-272
regl6,reglb,immlé 12-108|PS: 12-325
regl6,meml6,imml6 [12-109|PUSH mem16 12-260
MULU reg8 12-95 reglh 12-261
mem8 12-96 sreg 12-262
reglé 12-97. PSW 12-263
meml 6 12-98 R 12-264
NEG reg 12-143 imml6 12-266
mem 12-144{REP 12-24
NOP 12-324/REPC 12-21
NOT reg 12-141/REPE 12-24
mem 12-142/REPNC 12-23
NOT1 reg8,CL 12-180|REPNE 12-26
mem8,CL 12-18LREPNZ 12-26.
reglé,CL 12-182REPZ 12-24
mem16,CL 12-183RET 12-256
reg8, imm3 12-184 pop-value 12-257
mem8, imm3 12-185
regl6,immd 12-186) pop-value 12-259
meml6, imm4 12-187|RETEM 12-328
cYy 12-188RETI 12-308
OR reg.reg 12-158/ROL reg,1 12-227
mem.,reg 12-159 mem, 1 12-228
reg,mem 12-160 reg,CL 12-229
reg,imm 12-161 mem,CL 12-230
mem, i mm 12-162 reg, imm8 12-231
ace,imm 12-164 mem, imm38 12-232
ouT imm8,ace 12-48 |[ROL4 regs 12-85

B-3

Instruction page Instruction page
ROL4 mem3 12-86 | SHL mem, imm8 12-214
ROLC rez.1 12~239{ SHR reg, 1 12-215
mem, 1 12-240 mem, 1 12-216
reg .CL 12-241 reg,CL 12-217
mem.CL 12-242 mem,CL 12-218
reg, imm8 12-243 reg, imm8 12-219
mem, imm& 12-244 mem, imm3 12-220
ROR reg,1 12-233|SHRA reg,1 12-221
mem, 1 12-234 mem, 1 12-222
reg,CL 12-235 reg,CL 12-223
mem,CL 12-236 mem,CL 12-224
reg, imm8 12-237 reg,imm8 12-225
mem, imm8 12-238 mem, imm8 12~-226
ROR4 regd 12-87 |SS: 12-325
mem38 12-88 |STM dst~block 12-36
RORC reg, 1 12-245{STMB 12-36
mem, 1 12-246|STMW 12-36
reg.CL 12-247|suB reg,reg 12-66
mem,CL 12-248 mem,reg 12-67
reg,imm8 12-249 reg,mem 12-68
mem, imm8 12-250 reg,imm 12-69
SET1 reg8,CL 12-199 mem, i mm 12-70
mem8,CL 12-200 acc,imm 12-71
regl6,CL 12-201{SUB4S 12-81
meml6,CL 12-202{SUBC reg,reg 12-72
reg8, imm3 12-203 mem,reg 12-73
mem8, imm3 12-204 reg.,mem 12-74
regl6, imm4 12-205 reg,imm 12-75
meml 6, immd 12-206 mem, imm 12-76
cYy 12-207 acc, imm .2-78
DIR 12-208|TEST reg,reg 12-145
SHL reg,l 12-209 mem,reg 12-146
mem, 1 12-210 reg, imm 12-147
reg,CL 12-211 mem, imm 12-148
mem,CL 12-212 acc,imm 12-150
reg, imm8 12-213|TEST!1 reg,CL 12-172

B-4

Instruction page

[TE3T1 mem3.,CL 12-173
’ regls.CL 12-174
| meml6,CL 12-175
regd, imm3 12-176

! mem8, imm3 12-177
reglé, immd 12-178

mem! 6, i mmd 12-179

TRANS src=table 12-17
TRANSB 12-17
XCH reg.reg 12-18
mem.,reg 12-19

AW, reglhb 12-20

XOR reg.reg 12-165
mem, reg 12-166

reg,mem 12-167

reg,imm 12-1638

mem, imm 12-169

acc, imm 12-171

MOV DSO, regl6é,mem32 | 12-12
DSl, regl6,mem32 | 12-13

AH, PSW 12-14

PSW, AH 12-15

PUSH imm8 12-265

B-5

INSTRUCTION SET

uPD 70108
uPD 70116

Instruction Set
Table 1 Operation Types

identitier Description

reg 8- or 16-Bit general-purpose register

reg8 8-Bit general-purpose register

reg16 18-8it general-purpose register

dmem 8- or 16-B8it direct memory location

mem 8- or 18-Bit memory location

mems 8-Bit memory location

memi6 16-Bit memory location

mem32 32-8it memory location

imm Constant [0 to FFFFH)

imm16é Constant (0 to FFFFH]

imm8 Constant [0 to FFH]

imm4 Constant [0 to FH)

imm3 Constant [0 to 7]

acc AW or AL register

sreg Segment register

src-table Name of 258-byte transistion tabie

src-block Name of biock addressed by the IX
register

dst-block Name of block addressed by the |Y
register

near-proc Procedure within the prog
segment

far-proce Procedure k in ther program
segment

near-iabel Labe! in the current program segment

short-label Between —128 and +127 bytes from the
end of instruction

far-label Label in another program segment

memptrié Word containing the offset of the memory

location within the current program
segment to which control is to be

transferred
memptr32 Double word containing the offset and
base of the Yy
L within the prog
segment to which control is to be
transferred

regptrié 16-Bit register containing the offset of the
yi within the prog
segment to which control is to be
transferred

pop-vaiue Number of bytes of the stack to be
discarded [0 to 64K bytes, usually odd
addresses|

fp-op Iimmediate data to identify the instruction
code of the external flosting point
operation

Table 2 Operstion Types (Cont'd)

Identifier

Description

Register set

Word/byte tieid [0 to 1]

Register fieid {000 to 111]

Memory field (000 to 111]

Mode fieid (00 to 10]

JHHEN

When S:W = 01, dsta = 16 bits. At ali other
times, data = 8 bits. When S:W = 11, the
sign of the byte data is expanded to make
a 18-bit operand

X, XXX, YYY, 222

Data to identify the instruction code of the
external floating point arithmetic chip

Table 3

identifier Description

AW Accumuiator (18 bits]

AH Accumuiator [high byte]

AL Accumulator [low byte]

BW BW register 16 bits]

cw CW register [16 bits)

cL CW register [low byte]

bW DW register {16 bits]

sP Stack pointer (16 bits]

PC Program counter [18 bits]

PSW Program status word (16 bits)

X Index register [source] [18 bits]
1y Index register [destination] [16 bits]
PS Program segment register (18 bits]
ss Stack Segment Register (16 bits]
DS, Data segment 0 register [16 bits)
DS, Data segment 1 register 16 bits]
AC Auxiliary carry flag

cyY Carry flag

Parity flag

S Sign flag

r4 Zero flag

DIR Direction flag

1€ Interrupt enable flag

v Overtiow flag

BRK Break flag

MD Mode flag

Values in parentheses are memory
contents

identifier Description

disp Displacement (8- or 16-bits]

oxt-disp8 16-Bit displ (sig byte
+ 8-bit displacement)

temp Temporary register [8-/16-/32-bits]

tmpey Temporary carry flag [1-bit]

seg Immediate segment data [16-bits]

offset Immediate offset data [16-bits]

<— Transfer direction

+ Addition

- Subtraction

x Muttipiication

- Division

% Moduio

AND Logical product

OR Logical sum

XOR Exclusive logical sum

XXH Two-digit hexadecimal value

XXXXH Four-digit hexadecimal vaiue

Tabie 5 Flag Operations

identifier Description
[blank] No change
0 Cleared to 0
Setto 1
X Set or cleared according to the result
u Undefined
R Value saved earlier is restored
Table 6 Memory Addressing
mod/
mem 00 ()] 10
000 BW-+IX BW + iX +disp8 BW + IX + disp16
001 BW + 1Y BW + 1Y + disp8 BW + 1Y + dips16
010 BP+IX BP + IX + disp8 BP + IX + disp16
011 BP+1IY BP + 1Y + disp8 BP + |Y + disp16
100 IX IX + disp8 IX + disp16
101 [} 4 1Y + disp8 1Y + disp16
110 Direct Address BP + disp8 BP + disp16
111 sw BW + disp8 BW + disp16

Table 7

reg w=0 w=1
000 AL AW
001 cL cw
010 DL ow
o011 BL BW
100 AH sP
101 CH BP
110 DH X
11 BH v
Table S Sel of Segment Reg
sreg
00 DS,
01 PS
10 ss
1 DS,

The tables on the following pages show the instruction
set.

At “No. of Clocks”, the figure on the left side of the
slash (/) shows the clocks for a byte operation (W-bit =
0) and the figure on the right side shows the clocks fora
word operation (W-bit = 1).

"No. of Clocks"” includes these times:

o Decoding

® Effective address generation
e Operand fetch

® Execution

It assumes that the instruction bytes have been pre-
fetched.

Z S d AR
s3ery

971821 <« MY

821 <« (wouw)

891 «> Sz

(IV + Mg) —~ TV

gIwam — g[8ax

HY = XD X ‘q ‘x OV ‘x ‘z ‘S
XD ‘x ‘d ‘X ‘QV ‘X ‘7 ‘S — HY

(z + zewsw) — 150
(zgwau) — g78ax

(z + zgwaw) — 0sq
(zgwemw) — 9g18ax

8218 — (9[wam)

8a1s — g18ax

1sa ‘0sa@ ‘ss : Fais (9Tuem) — 3Jais
1Sa “0sd ‘ss : 8asis 91801 — 8ais

v — (wdup) ‘HV — (I + WAWP) [= M USYM
Iav — AENEmvv 0 = M uaym

(wswp) — Ty ‘(] + WAWP) —> HY [= M UdyM
AEwEvv - IV 0 =M uaym

mmy — Sax
umy —- (wom)
(wam) —= Bax
821 — (uweuw)

321 — %a1

worieaadg

¥z/91

9z/81

92-81

¥1/01

S1/11

€1/6

#1/01

ST/11

St/11
€1/6

sy2019

v-Z wam
z o1
1

-2 wau
1
1

vz wam

9-2 wam

v-2 mam
z 8aa1

-2 wam
z 8a1
€
€

€T

9-¢ waum

-2 waum

-2 maw
4 8ax

a1

8ox

8a1s ¢
3a1s o
8a1s

8axs

000

821
8ax

8a1

pouw M

pow |

pou 0

pomw |
pom
11 0
pou ¢

I1 0

pou #
pou M
pom M

T1T M

01Z€eE%S9¢L 0
apod uor3ieaadg

sa14g

a1

T1

T0
00
10

17

€

1

My ‘91881
91821 ‘Mv

wom ‘331
831 ‘waum

891 ¢8ax HOX
a1qe3-das SNVIL
gTwam “gy3ax viaa1
HY ‘MSd
MSd ‘HV

Zgwau
‘91821 ‘1sa

Zewam
‘91821 ‘psa

8a1s ‘grmam
8a1s ‘gy8aa
grwam “3axs

91821 ‘Baas

J%e ‘maup

wawp “do®
umy <8ax
wny ‘waw
wam ¢8ax
8s1 ‘uwau

821 *“8ax AOK

pueaadg OSTuomauy

SUOT3ONI3ISUT Jojsuel] e3eq

T- AL — KI : 1 =¥IQ ‘2 + XL — XI : 0
(XTI ‘T + XI) - MV

q1a
M uaym

—
L}

6-L
T -XI = XI ¢ 1 =4I ‘T + &I = XI : 0 = ¥ICQ a1qelL
(XI) - TV 0 = M uayy a3g 1 MTTTO0OTOT }201q-38p WIWD

-k = XI ‘T -XI -~ XI : 1 =1YId
T+ AL = I ‘T +XI -~ XI ¥1a
(AT ‘T + AI) = (XI T + XI) 1 = M uayy

(=]
"

—

1 - — XI ‘T -XI — XI: [=¥IQ
1+ XL =~ AL ‘T + XI = XI 0 = ¥1a }201q-3Sp

(AI) - (XI) 0 = M uayn w 1 MTTOOTOT A201q-21s AEdHO

7 - AL — X1 ‘7 -~ XI = XI
T+ AL — XI ‘T + XI — XI
(XI ‘1 + XI) = (&I ‘T + XI)

= ¥Id
d1a
= M uayM

- O e
Ll

1 - X = XI ‘T -XI — XI:1=3JIC 8-/
I+ A = XI ‘1 +XI — XI : 0 = ¥IC °1qeL A2079-218
(XI1) = (XI) 0 = M usyy 33§ 1 MOTOOTOT “1207q-38p XIAOH

SUOTJONIISUT 13JSUBI] YO0[q SATITWIAJ
*dooT 2yl ITX3 ‘Q#Z PuUB WAWD 10 XdJWD ST UOFIONIISUT
Iajsueil }oo1q aAf3ITwiad ay3l jy °passadoxd ST IT

“3dnazajuy Buriyes e ST 812yl JI *([-) pIIuaWaIdAp ZNdTY
ST M) PUB P3Indaxa? ST UOTIONIISUT Iajsuel

3201q aaT3Twrad 3yl yo 234q Ixau 3yl ‘O#MD ATTUM 4 1 0T00TTITTI ANdTY

*dooT ay3l 3IIxXa ‘1#Z PUB RAWD 10 YGJWD ST UOTFIONIISUT Zdqd
123suell Yo01q aaf3fujad ayl jy °passadoad ST 3IT

¢3dnaaajut Supiyem e ST @19yl JI *([-) PIIusWAIDAP 4439
ST MO PUB pP33ndaxa ST UOTIONIISUT Iajsueil

j}oo1q aarayurad 3yl jo 234q Ixeu 3yl ‘O#MI STTUM z 1 T100TTT11 a3y

*dooT 3yl ITX?3 ‘Qf#X0 ueyM °passadoad ST 3T
¢3dnizejur Buyiyem B ST 213yl JI *([-) PaIuaWRIIAP
ST M) Pu® paIndaxa ST UOTIONIAISUT I3JSueil

3201q 2aratwrad ay3 Jo 334q Ixau Y3l ‘0#MI ATTYM 4 T 00TO0O0TTIO ONdTY

*dooT @y3 3ITX?d ‘[#xD ueyM °passadoxad ST 3IT
¢3dnizsjur Buriyes e ST aisyl 3II *(1-) pa3juswaidap
ST MD PUB P93INd9X? ST UOFIDNIISUT I3JSUBI]

3201q 2at3Twrad ay3 jo 234q Ixau Y3l ‘0#MD STTUM 4 1 Tor1T00TTO odM

Z S d AKXV 0TZ€E€EYS9L 01ZTE€EYSI9L
s3etq uoriezadp sSHO0T) Sahg 2pod uofieaadp puexadg ojuowauy

XTjoag 3vadey

¢ - KI = XAI : 1 =9¥I0 'C +AI — XI : 0 = ¥IQ

(MA‘T + MQ) = (AII + XI) 1 = M UayM
6-L
I - XL = XI : 1 =310 ‘T + A1 =~ XI : 0 = ¥Id aTqey Ma
(M@) = (A1) 0 = M uayn CLH] 1 MOTTIOTTO ‘}207q-3sp WNI
suof3ioniisuy 3Inding/induy aATITUTI]
W~ (MQ) ‘HY = (I + MQ) T = M uayp
W — (MQ) 0 = M usuyMm Z1/8 1 MTITIOTTTI 208 ‘M
TV == (8WuT) ‘HY —~ (I + guUU) [= M uayp
TV -~ (guuy) 0 = M udyM Z1/8 4 MTTOOTTIT Joe ‘guwwy 100
(M) = TV (1 + #Q) — HY 1 = M udyy
(M) — IV 0 = M uayn Z1/8 1 MOTIOTTTI Ma ‘oo
(guur) —= TV ‘(I + QUWUWT) -~ HV [= M UaYM
(gUWuUT) — ¥ 0 = M UdYM €1/6 4 HOTOOTTTI guuy €d0® NI
suot3doniisuy inding/induy
‘ 81 000711
PT2F3 3TQ91 = MV " Y TTOTTTIOO0 TTTTIODO0O0O yuap €g8a1
z5-52/ 821 821 11
PT2TF 37991 — MV %%-1C € TT00TTOO0O TTTITO0DO000 8821 “g8ax 1xd
821 00011
MV -~ PTTJ 37991 " v TOOTTTIOO TTTIONDOOO yuuy €g3a1
€01-6¢4/ 821 81 11
MV -= PI®TJ 37991 £8-L9 € T0O00TTO00 ITTTODO0O00O 8821 “g3a1 SNI
SUOT3OoNIISUT uorierado pratj ITL
¢ - AL = XI : 1 =V¥IQ ‘Z + A1 — &I 0 = ¥IQ
MV = (AL ‘I + XI) T = M uayM
[- AL = AI : T =23¥1Q ‘1 + XI — XI 0 = ¥Id
W —> (XI) 0 = M udumM n 1 MTOTOTOT 3}201q-38p WIS
T-XI = XI :1=23IC°‘+XI:0=YIQ
(XI ‘T + XI) — MV [= M uayp
6-L
1-XI = XI:T=3IC ‘] +XI-— XI :.0=3IC °1qeL
(XI) = IV 0 = M uayy ?3g 1 MOTTIOTOT }201q-218 Wa1
Z S d AROV 0TZEYS9L 0TCTEHNSIL

s8eryq uotieradg syo0T) sa34g 2po> uoyiexadg pueiadg OSFuowmauy

wny - MY =~ MV T = M USUM
mwF - Y == IV 0 = M Uayy

umy - (waw) —> (Wam)
uwf - 831 — 8ax
(wowm) - 831 — Joax
831 - (wem) — (wam)
8921 - 891 — 8a1

A0 + WWE 4+ MY =~ MV T = M USUM
AD 4+ WA 4+ Iy ~ IV 0 = M USYM

X0 + wuy 4 (wew) —- (WaW)
A0 + muy 4 331 — 8oz

10 + (wem) 4 821 — B
X0 + 891 4 (wam) — (wam)
X0 + 891 + 821 — 8ax

WO + MY —> MY 1 = M USUM
X X X X X X uwy + IY - IV 0 = M UdyM

uuy 4+ (WeW) - (WIW)
X X X X X X my + 891 — 881
(wow) 4 891 — 8oz
821 + (wem) —» (wRW)
821 + 821 —» 33z

d1a
M uayp

T-XI = XI:1=73IQ‘CT+XI—~ XI

20
(XI ‘T + XI) = (MA‘T + MQ) 1

T-XI-> XI:1=¥IC:T+XI— XI:0=1¥IC
(XI) = (MQ) 0 = 4 uduM

Z S d AZXDOV
s3eTd uotieaadp

Y €-T
9z/81 9-¢
Y =€
SI/11 -2
%Z/91 -7
z z
Y €-C
9z/81 9-€
Y y-€
ST/ -2
¥Z/91 YT
4 z
Y €~
9z/81 9-¢€
Y y-¢
ST/11 -2
%z/91 v-T
z z
6-L
a1qeL
995 1

s)Y20TD $314g

waum

8ax

wmam

81

uawm

T0

T0

81

8aa

891

1 pou

TT11
pou
pom

T1

0 pou

pom
pou

11

0 pom

poum
pou

11

0

0

0

0

0

0

wmy

umy

wwE

wau

8a1

821

“doe

‘wau

¢3ax

¢8a1

‘wam

¢3ax

‘oo®
‘maum
¢3ax
‘891
‘mam

“8aa

€ooe
‘mam
“3ax
¢8ax
‘wam

¢8ax

ans

oaav

aav

SUOTION1ISUF UOT3IOEIIQNS/UCTITPPY

MTTITOTTO

0TZ€%S9L 0T1TCZ€%S9L
apod uorjeradg

3y007q-218
‘Ma

puexadg

W00

dFuowauy

X X X X

X X X X

X X X X

83181p @09 3O 1aqunu 3yl JTeY JUO :u

I + 91831 — g18a1
1 + (wew) —~ (weou)
1 + §831 — g8aa

ron Jusm }—{Tw |

waum

lnor [ussy J—{Tv]

821

8uta3is gog 21s - Surais gog ISP

8utiis 009 d1s - Bupils (qOg Isp — Sutilis @Og ISP
8ur13s @0d °1s + Burils @0g ISP — SBuFilIs @0g ISP
XD - WAT - MY = MV [= M USUM

AD) - WA - TV =~ TV 0 = M USUM

X0 - T - (WaW) —= (Wam)

X0 - mmy - 831 — 8ax

X0 - (wam) - 821 — Jazx

X0 - 821 - (waw) — (wam)

X0 - 821 - 831 — 8aa

uot3eaadp

4
%z/91
4

€€

(Y4

8T

ST

ux 61

9z/81

ST/11

9z/91

83207

1 %1 00010

-z wuw goO0oPW MTTTITTITI

z 81 000TT OTTTITTITII

821 ¢
€ 000TO0TOO0 TTTTI

9-€ wemw 1 T QPOm MSOO

y-€ 821 11011 MSO0O

-z wem 831 pom M IO T
4-7 mom 831 pomw M QO
[4 821 %2 11 MTIOT

0TC2€E%S9L 012¢
sa34kg 3pod> uojieaadp

91821
wau

g8ax

ONI

SUOTIONIISUT 3USWLIV3(J/3IUamaIou]

0
0

oo

oo

0
0

pou
00

o -
O -

pou
00

-
—

00

guam

g38aa

guam

g8ax

k2 (0§

Y108
SHdRO

svans

syaav

SUO}3oNI3SUT UOT3eaado (og

00

waf ¢oo®
uny ‘wsum
umy ¢8ax
waw ‘331
831 ‘maum

8ax1 *8ax

pueiadp

ogns

STuomAuR

C-10

X0 oV

-

b

R

-

bt

> >

-

Hi

> >

‘1
‘0

X0
XD

X0
X0

X0
X

X0
10

-

—

—

uofsuedxa udys MY # MA
uoyrsuedxa udfs My = M@
(9Tmaw) X MY —= MY ‘Md

: uoysuedxa u8ys MY # MA
: uorsuedxs u8ys MYy = MQ
91821 X MY — MV ‘Ma

uoysuedxa u8ys IV # HY
uoysuedxs ulys TV = HY
(guaw) X IV -=— MY

uoysuedxa u8ys TV # HV
uofsuedxa u8ys Ty = HY
8831 x Yy —~ MV

- A ‘T — XD 1=
- A ‘0 — X0 0 =M
(9Tweuw) X MY —~ MV ‘Md

= A ‘T == X0 ! 1 =M
— A ‘0 — X0 0 = M
91831 x MY —— MV ‘Md

~~ Al = X0 :0¢#H
~= A ‘0O == X0 : 0 =HV
(guem) X Ty — MY
— A ‘1l — X0 :0#HV
— A ‘0~ X0 : 0 =HV
g821 x TV — MV

1 - 9181 — 91821
1 - (wew) — (mwam)

1 - g8a1 — g8ax

uofieaadp

LS-€S/
€5-LY

Ly-1y

SH-6€

6€-€€

o7-6¢/

9€-s¢€

0€-62

8z-LT

-1e

%2/91

832070

=T

-t

sa34g

waum

821

8ax

waum

821

0r1¢

831 1
opom MTTT
0TT OTTT1

9L 017C¢€E
apod> uorjeaadg

11 gTmam
11 91891
11 guow
11 g8a1 TR
11 g[mam
11 91321
11 guam
11 g8aa 10K

SUOTIOINIISUT UOTIBDTTAFITIN

10 91801

) 11 mam

11 g3aa oda
9L

pueiadg OSTFuowauy

c-11

nnnn

nnnn

Z S d A
s8erd

nn

nn

X0 OV

8.‘:.0 2d

‘(z‘€) = Sd ‘0 =— Yad ‘0 — dI

9 = dS — ds ‘0d = (9 - ds ‘¢ - dS)

sd = (% - ds

918ax

0‘1)—~ 024
9 -

sd = (y - ds

‘¢ - ds) ‘MSd — (z - ds ‘1 - dS)
Hdddd < 91821 + dway uayp

+ dwsl — My ‘97821 % dwusl —» MQ
Hiddd S 91821 + dwa3l uayy

MV ‘Mq@ — duma3

‘(z°¢) = Sd ‘0 — g ‘0 — dI
ds — ds ‘0d =~ (9 - dS ‘S - ds)
‘€ - ds) ‘MSd — (z - ds ‘1 - ds)

Hid < (gwem) <+ dwa3 uaypm

(gwam) + dwal —» Ty (gmwew) % dwsl — Ry

(0‘1)— od
O -

RHid S (gwsw) + dway uaypm
MV — duwa3

‘(z‘¢) = sd ‘0 — g ‘0 — 4dI
ds — ds ‘0d — (9 - ds ‘S - ds)

Sd — (% -4ds ‘¢

g8a1 +

—

i

—

b

-~ dS) ‘MSd = (7 -
Hii < g8a1
1y “g831 ¥
Hid 5 g8ax1

dusy —-

X2
A0
Tuwy

> B>

-

o
ot
K oee o

X0

9Tuwy

= >
-
—

©Q

E

-

Moee e

=4

=
|
]

MY —

S3¥q 91
8319 91
(9rwam)

$37q 91
$31q 91
x 91821

S319 91
S3Tq 91
(91mau)

S31q 91
$31q 91
X g[8aa

ds ‘1 - das)
+ dwe3 uaypm
dway — HY
+ dway uaym
dwa3y

< 39npoag
= 39npoag
— 9183z

< 3onpoag
= 30npoig
— 91821

< 39mpoag
S 3jonpoag
— 9]8ax

< 39npoag

< 39npoag
— 9781

uot3eradg

Y4

ST

61

£s-9%/
8Y-2%

r-9¢

79-8¢/

0y-%¢

Y€-8¢C

$)207)

[4 821 0T T1TIT TTTOTTITTI 91821

-2 ww gy ipPom QTTOTTITI guam
z 81 0T TT1T 0OTTOTTITI 8831 naIQ
SUOTIONIISUT SPTATQ pouldysup

9Tumy

9-% wow 831 pow 1 QOTOT1T0O ‘9 Tuau

91891

9 Tumy

v 821 81 11 100I10TTO (*91821)

‘91821

guuy

S-€ waw 831 pow [TQOTOTT0O ‘9 uau

‘g18aa

guuy

€ 81 %1 1T IT0T01T0 (*91821)
‘91801 R

0TZEYS9L OTCTEY

s314g apoo uoyieiadg

S

9L

pueiadg OTuowauy

c-12

nnannan

nnoaonnn

nnannnn

nnaon o

nnaanan

Z S d AXDOV
s8e1yg

(0°1)—~ 0d “(z‘¢) — sd ‘0 — Mud ‘0 — 1l

9 ~ dS —~ dS ‘0d = (9 - dS ‘S - 49)

§d == (% - dS ‘€ - dS) ‘MSd == (T - dS ‘1 - dS)

1 - Hidd/ - 0 > (9Twew) + dwal pue o < (9qwaw) - dws3
10 Hidd/ < (91wem) + dwdy pue O < (9rwaw) + dudl udyMy
(9rwaum) + dwey — My ‘(9Jwam) y dwal — MQ

1 - Hid[- 0 < (9Twew) + dwd3 pue o > (9Twaw) + dwey
10 H44d. 5 (9jwam) + dway pue (g < (9[wsw) + dwel usayM
MV ‘M@ — dwa3

(0°‘1)—= 0d ‘(2‘¢) — Sd ‘0 — g ‘0 — 4I

9 -dS — dS ‘0d — (9 - dS ‘S - dS)

Sd = (9 - dS ‘€ - dS) ‘MSd — (Z - dS ‘I - dS)
1 - Hddd/ - 0 > 91831 + dwd3 pue (< 978s1 + dwel
10 HAddl «< 91821 + dwsl pue (.~ 91831 + dway uaypm
91891 « dwey — My ‘918e1 y dwsl — Ma

1 - Hidd/. - 0 < 91821 + dway pue @ > 9y3ax1 + duwe3
10 Hidd/ = 91821 + dwel pue 0 < 91821 + dws) uayy
MV ‘M@ — dwa3

‘)= 0d ‘(z°¢) — Sd ‘0 — Xy€ ‘0 — 4I

9 - ds — dS ‘0d = (9 - dS ‘S - ds)

8d == (% - dS ‘¢ - dS) ‘MSd — (¢ - dS ‘1 - dS)
1 - HiL - 0 > (gwaw) =+ dwal pue g < (gwaw) + dwal
10 Hi/ < (guwam) + dwa3 pue g < (guaw) + dwal uayy
(guaw) + dwel — Ty ‘(guwew) % dwdl — HY

1 - HIL - 0 < (guwaw) + dwa) pue o > (gwew) + dway
10 i/ < (guwem) + dway pue o < (gwem) + dwal uayy
My — dwaa

(‘1) 0d ‘(z°€) — Sd ‘0 — W& ‘0 — 4I

9 -ds — dS ‘0d — (9 - ds ‘G - dS)

Sd = (¥ - dS ‘¢ - dS) ‘MSd — (z - dS ‘1 - ds)
1 = Hi, - 0 > @821 - dwdl pue (§ < g8s1 - dwa3 10
Hi/ < 8801 + dway pue o < g8ax1 + dmal uaym

@821 + dwdl — Ty ‘g8a1 y dwel — HY

1 - HiL ~ 0 < 8891 + dwal pue g > g831 + dwal 10
Hi/ = 8821 + dwel pue (< 321 + dwd3 uayy

MY — duwe3

(0‘T)— 0d “(z°¢) = 8d ‘0 — g ‘0 — 14l

9 - ds ~ ds ‘0d = (9 - ds ‘S - dS)

Sd — (% - dS ‘€ - dS) ‘MSd — (T - dS ‘1 - dS)
HIIdI < (9Twaw) =+ dwal usym

(9Twaw) + dwel — My ‘(9[weum) % dway —— MQ
Hiddd < (91wam) % dwal uaypm

MV ‘M@ — dwa3

uojieaadg

£5-8%/
6%-9%

€y-8¢€

0%-G¢

E-6¢

Se/1e

S)2071D

-7

-2

sa14gq

wew Ty TPom TTITOTTIII

821 11111 TT1TT1O0TTTTI

wemw 1 T TPpPoWw QTITOTITITI

821 T 1111 OTTOTTITI

waw o [rpow T TITOTTITI

0TZEYS9L 0TCZTEYSIL
apod uor3ieradp

g Tmaum

918ax

guam

g8a1 AlQ
gwau NAIQ

pueiadg OTuowauy

C-13

d A
s3eryq

10 oV

W - MY ‘T = M UdyM
iy -V ‘0 = M uayM

wmy - (wau)

wuy - 8231
(waw) - 8ax
831 - (wouw)

891 -~ 8ax

Hiddd — MQ 3STA 29430 ‘0 — MA ‘HO008 > TV USYM
Hid — HY 9STA 19430 ‘0 — HY “HO8 > TV UayM
TV + HV0 X HY — TV ‘0 — HV

HVO % TV — IV ‘HV0 + TV — HV

1T — X0 ‘HO9 - TV — TV

T = XD 10 Hi6 < TV UayM

T— OV OVA XD — X0 ‘9 -1V — TV
‘T =0V 10 6 < HI 0 > TV U3YM

HI0 1TV — 1TV ‘OV — XD
‘T == OV ‘I -HV — HY ‘9 -1V—> 1TV
‘T = DV 10 6 < HI0 V TV usayM

1 — X0 ‘HO9 + TV — TV

‘T = XD 10 HI6 < TV UayM

‘T— OV OV ANXD — XD ‘9 4+ T — 1TV
‘1 = OV 10 6 < HI0 V TV UayMm

HIO V IV — TV OV — X0 ‘I — OV ‘I 4+ HV — HV
9+ TV — TV ‘T = OV 10 6 < HIO V IV USYM

uorjeradp SYI0TD

L1/e1

ST/11

ST/11

S-y

ST

€2 MOTTI
9-¢ wew T [T POm MSOQO
y-€ 81 11111 MSO00O
-2 wam 831 pow M [QT
-7 wow 831 pom M QT
z 821 %1 11 MTIOT
1 T00T
1 000T
[4 0TO0TO0000 TOTO
[4 0T0OT0000 OO0TO
1 T111
1 T1T11
1 IT110
1 IT1TT10
0TZeEwS9L 0T CE

sa34g apod> uorjexaadp

—

~

Lt

wam

8ax

¢20e

‘wmaum

¢3aa

¢3ax

‘wam

¢gax

SUOTIONIISUT oxedmo)

TMLAD

MELAD

4arAd

QgrIAD

SUOTIONIISUT JI3AUO)

puexadg

syrav

sqrav

vyrav

varav

dTuowauy

UOT3IONIIsur Isnipy qdg

Cc-14

X 0 0 N (mau) A 821 — 831 GT/T1 ard mwom 821 pom M T QOTO00O0O0 waum ¢3ax

X 0 0 N 821 A (wow) — (wam) %2/91 v-7 mem 831 pou MO OTOO0O0O 891 ‘weum
X 0 0 n 821 A 891 — 8azx 4 4 891 891 11 MTIOTIO0000 821 ‘3ex 30
9IWUT V MY — MY ‘T = M USUM
X 0 0 N guuat vV IV — IV ‘0 = M USyM ki €-7 MOTOO0OTOO wuy ‘d0E
X 0 0N mip Vo (wew) — (WIW) 9Z/8T 9-€ wem 0 QT POW MOOO0O0OT mmy ‘maw
X 0 0 N wuy vV 831 — 321 k4 Y-€ 81 00TTT MOOO0OOOOT way ‘331
X 0 0 n (wow) V 821 — 8ax ST/11 -7 mow 831 pow M TOQ0O0O0TOO wam “8ax
X 0 0N 821 V (wduw) — (waum) %Z/91 v-2 wom 891 pomw MO OOOTIOO0 891 ‘wmem
X 0 0 0N 891 V 891 — 3azx z z 821 891 11 MTO000TO0O 891 *8azx anv
guUT V MY ‘T = M Uayy
X ¢ 0N guuF v IV ‘0 = M U3UM (4 €2 MOoOTOTIOT L SRE R
X 0 0N my Vo (waw) ST/11 9-¢ ww gooPom MTITOTTTITI uny ‘wam
L wny V 321 Y =€ 821 000TT MTTOTITI w321
wow ¢8ax
X 0 0 N a1y (wawj ¥1/01 v-2 waw 821 pom M OTO0O0O0O0T 821 ‘wem
X 0 0 N 821 V 81 z z 8ax 831 11 MOTIO0OO00O0T 821 “8ax 1S3l

SUOTIONIISUT uorjeiado TeOT307

X X X X 1+ (uew) — (wam) 4z/91 L4 wew [TQPW MTTOTTITTI wau
X X x X 1+ 831 — 321 z 4 831 1T 10TT HTTOTTITTI 881 93N
(wow) — (wom) %2/91 - wam Qg T QPOW MTITOTITTITI waum
m.&mﬁ z 4 821 0TO0TT MTTOTTITITI 821 ION
d A XD OV 0TZEYS9L 0TZTEHYSIL
s3eryq uorjeiadp sy207) s934g apod> uofieaadg pueiadg OTuomauUR

SUOTIONIJISUT Juswadwmo)d

C-15

00—~ z:1-= u

1 — 2 :0 = (97waw) jo vumy °*oN 3ITq
0=~ Z:1= "

I = 2 :0 =931 yo yumy *oN 3Tq
0= z:1= "

1 =~ Z: 0= (swew) jo gumwy °*oyN ITq
00— z:1-= "

1 —~— Z :0=g83%1 o guuy *oN 3ITq
00—~ Z:1-= u

1= Z:0=(97wsw) 30) *oN 3ITq
00—~ Z:1-= "

T — Z:0=9718a1 3010 *oN 379
00— Z:1= u

1—~ 2 :0=(gmwm jo Ty *oN 3Tq
00— zZ:1= u

1 —~ Z:0=g%821 30T *oN 3Tq

IWUE A MV — MY ‘T = M uayy

ST ATV —~— TV ‘0 = M UdYM

wut ,>. AENEV — AEWEv

miy A 391 —= 331
(waw) A 891 —— 8oz
821 A (wew) — (mauw)
891 A 891 — 8oz

‘T = 4 usyy
‘0 = 4 uayy

9TUWE A MV — MV
gUUE A TV —~ IV
wwy A (WSw) — (wou)

mt A 851 —~ 8a1

uoyaexadp

HiQ =

L1/€1

€l

91/c1

4

9z/81

S1/11

¥z/91

9z/81

sya07)

234q 31sT : x »934q pag

—_—
9-% waw o 0 O poum
Y 821 00011
9-% waw (Q Q Q powm
Y 81 00011
S-€ wu (0 pom
€ 81 000711
S-¢ wsm (0 0 pom
€ 81 000TT

€-2
9-¢ waw o [[pom
9=-€ 821 g1 1711
4-2 waw 831 poum
-2 wow 831 poum
4 821 Baa 1 |

€-2
9-€ waw [Q O pom
=€ 81 10011
0TZEYS9L

sa34g

¥?34q puz

—_————

TOOTTOO0O

IT0011000O

M

0

0

0T17?
2pod> uorjeaadg

0

€

yumy ¢ gwaw

yumy ‘gr8a1

0 guwy ¢ guauw

0 - ¢uuy ‘gdax

0 0 ‘9rusu

0 10 ‘91831

0 10 ‘gusm

0 10 *g8ax 115491

SUOTIONIISUT uofjerado 3rg
0 miy ‘ode
1 wui ‘wsm
1 wuy ¢‘8ax
0 wam “3aa
0 891 ‘mau

0 891 “8ax Jox

0 way ‘doe
1 wmy ‘wauw

1 mny ‘8a1 ¥0

pueiadg OoTuomaUR

C-16

1 — 8831 jo guwf *oN 3Fq

1 — (91Wam) jo T "ON 3Fq

1 —~ 91831 30 1) *oN 3Tq

1 — (gwauw) jo) °ON 3ITq

1 — 8831 30 T) ‘ON 3Tq

0 — (971wem) jyo ywwy °ON 3ITq
0 —= 91821 yo wuwp ‘oN 3¥q

0 — (gwaw) 3O guuf °‘ON 3ITq
0 — g821 jo gump ‘oN 3Iq

0 — (91wdw) 3o 1) °ON 3ITq
0 — 91831 30) °"ON 3T1q

0 — (8wWdW) 3Jo D ‘ON 3IIq

0 — 831 3o D ‘ON 3I¥q

X 10 — X0

(9[wam) jo ywmy °*ON IFTq —> (9[waw) jJo wumf °*ON 3I¥q

91821 jo pumy ‘oN 374 — 97331 Jo yww} °oN 3IFQ

(gusw) jo guwy ‘ON IFq —~ (§WAW) JO ¢WUT ‘ON ITq

g8a1 jo gumr °‘oN 379 — 8821 jo guuy ‘ON 3Tq

(91Wam) 3o 0 oN 3T — (9[waw) Jo O °ON ITq

91821 Jo 1) ‘ON 3119 — 91821 jo 7D °*ON 3IIq

(gwaw) jo) °‘ON 3ITqQ —~ (gwaw) 3Jo) "ON 3IIq

@821 Jo 7D *oN 3FTq — 8821 jo D ‘OoN 3I¥q

Z S d AXDDOV
s3e1q uoyiexadg

HI0 = 234q 38T &

S

1z/€t
ki
€1
ki

Lz/s1

ST

[ATAA

1

HI0 =
Lz/61
S
61
S
9z/81
v
81

Y

S320TD

ki

S-€

apoo uoTiexzadp

%2349 pag ¥234q puz
81 000117 00TTT000
mem 0 QOQPW TQ0TOTOO0O
81 000I1IT TOTO0OTO000
wem Qg QOQPW 0O0TOTOO0O
31 00011 00T0T000
wom gQOPW TTOTTO0O0O
81 00011 1TT0TT000
wow QQOPOW OTOTTOOO
81 00011 010TT000
wow 9 QOP™ TTOOTOOO
81 00011 11001000
wem Q QOQPW 0T100TO0OO
81 000171 01001000

TOTOTTITT
¥334q pig ¥934q puz
Ww 000PE TT111000
81 00011 TTTITIO000
wem Qg QOPO® OTTTTOOO
81 00011 0T1ITTTO000O
waw g QOPW TTTOTOOO
821 000TT TTTOTO0O00O
wom 0 QOPOW 0TTOTOO0O
81 00011 0TTO0T1000
0T CTEYS9L 01C€EYSIL

cumy ‘g8ax
10 ‘9rusw
10 91831
0 ‘gueu
10 ‘g8a1
yumy ‘guwam
pumy ¢9r8ax
cuuy ¢ gwaw
gumy ¢g3a1
10 ‘9Tuem
10 91821
10 ‘guaum
10 ‘g8a1

pae)

yuwp ‘gruem
yuwy ‘91821
gumy ¢guauw
guuy €g8aa
10 ‘9rweu
10 ‘91831
15 ‘guaum

0 “g8ax

puexado

1138

DO

TION

TLON

JdTuomauy

c-17

Z S d AKX
s8erq

1 - dusj — duwaj
7 % 821 —» 821 ‘821 jo gSH — X9
uofleiado sty3 3eadax ‘g # dway ayfym ‘gumy — duajy

1 - dusl — duwa3
¢ X (Wem) — (waw) ¢(wam) jo gSN — XD
uorjeaado syy3 jeadax ¢ # duay aryym ‘) — duay

1 - dusl — duwo3
7 x 821 — 81 ‘831 3O gSH — X0
uorlexado syy3 jeadax ¢ # dway aTIym ‘1) — duwe3

10 = AEwEv Jo gSW uaym
X0 # (wem) jo gSN usym
) ‘(wsw) 3o gSH — XD

0— A

1= A

7 X (Wwauw) —» (wow
0 D = 831 jo gSH uayy

|i>w
ﬂlv>5*w3uommz=w§
7 X 831 — 8ax ¢8aax 30 4SW — X0

I — 31a
I — X
0 — ¥Ia

0— X

T — (91wauw) jyo yumy -oN 3IFq
1 — 913831 jo wumy *oN 3T1q

1 — (8wsw) jo gumy *oN 3Tq

uorijeradp

S3ITYs Jo Iaqunu :u

Uy

ut

Lz/61

U4y

¥z/91

4

4

ka4

-z

HI0 = 234q 3s7 :

e/
S

1

syo1)

9-%
ki

9-Y

sa34g

¥

31 001 TT M0ODOOO
wdw gQr1poWw MTOQOTO
81 00T1TT HTOOTO
wiw Qo1 PoW MOOOTO
31 00T1TT MOOOTO
TOTTTTI

1T00TTT

0O0TTTITI

000TTIT

¥334q pig ¥934q puz
ww gooPom [QITTO
81 0001T TOTITO
wam gooPoW QOTITTO
0TZEYSY9L 0TZEYS

8pod uofjexzadg

guuy ‘831

19 ‘mam

10 *8azx

1 ‘wau

1 ‘821 THS

SUOTIINIISUT IITYS

q1a

P& 113s
dIa

p.&) N

yuwy g [uem
yumy ‘g18ax

fuuy ‘guam 113s

pueiadp OSyuowmauy

Cc-18

d A
s3etd

X0 oV

1
1

S3JTYs 3Jo iaqunu

*28uey> jou sa0p pueiado Jo gSH

0 -~ A ‘Z+ 891 — 821 ‘821 3o gST — 1D z z 8801
1 - dwey — duwe3
7 + (waw) — (umm) ‘(wmdw) JO SN — XI u4
uoriezado syy3 eadex ¢p # dwsy aTFym ‘guuwy — duway Lz/61 G-¢ wau

1 - dway — duag
7 + 891 — 891 821 jo gSH — X0
uofiexado syy3y jeadax ¢ # dwsl STTys ‘guuwy — dme3 U 4 / € 321

1 - dwey — duwagy
¢ + (wdw) — (wow) °(mam) jyo gSN —~ XD ut
uop3eaado sTyl jeadax ¢Q # dwel aTFym ‘0 — dwed /Z/61 =z wdm

1 - dwey — duwe3
7 + 821 — Bax “8a31 3Jo gSH — X0
uofjeiado sTy3l Jeadax ‘g # dwsy STFYA 9 — duel u 4/ z 8ax

— A :(wam) jJo gSW SurMOTITOF 3ITq = (WAW) JO gSH UIyM
Iv>nAEwEv«omwwaBOZOMu.E*AEmEVuommzcw_.:»

7 + (wdeuw) —» (Waw) °(waw) jo 9SW — XI %2/91 v-7 wom
1 — A :891 Jo gSK SulmoTioy 31q = 821 jo gSK uayy
1 — A :8a1 Jo gSW Surmolroy 3Tq # 891 3O gSH uayM
7 + 891 — 891 ‘321 jo 9SK — KI z z 891
1 - duey — duwe3
7 X (wauw) — (waw) ¢(waw) 3Jo gSH — XD u+4
uotierado syyl jeadax ‘g # dwal STFym ‘gumy — dmal Lz/61 [waum

uotieiadg $YO0T) s234g

Tpow MOOO

S$9L 01CE
2pod uof3jeaadg

1 ‘8ea

QU ‘waw

guuy ¢8ax

10 ‘weu

10 ‘8a1

1 ‘wem

1 ‘8ax

guuy ‘wmaw

puexadg

VYHS

gHs

THS

SuomauR

c-19

d A
s8e1y

Pl

XD
*uorieiado

‘uoriexado

X0

1 - dusy — dma3
- 7 X (Wduw) —= (wam) ¢(waw) jJo gSW — XJ
STyl 3eadax ¢g # duey 9TTys ‘guuy —~ duay

1 - duey — duaj
K - 7 x 831 — 331 ‘831 jo gSH — X0
STyl 1eadax ‘g # duey ®TTya ‘guuy —» dumag

1 - dudy — dumej
- ¢ % (waw) —~ (waum) ¢(wam) Jo gSH —~ X9

‘uor3jerado sTy3l jeadax ‘g # dwsy arTym ‘) —~ duez

1 - dway —~ duej
X0 - 7 x 831 -~ 821 ¢Sax 30 gSH —= X2

‘uoryerado sTy3 3eadax ‘g # dwudy aryym ‘1) — duajy

0 =~ A XD = (waw) jo gSN
I = A :XD # (wdw) jo gSW

X - 7 X (wdu) — (wouw) ¢(waw) 3o gS —— X9

0 == A X0 = 331 yo gsR

T = A :XD # 831 3o gsn

X0 - ¢ x 821 —= 331 ‘881 jo gSH -~ X0

*a8ueyd 3jou saop pueiado jo ggy ‘1 - dwel — duey

¢ + (Wduw) —— (womw) ¢ (wsw) jo gST —~ 1)

n cuorjeiado syy3 3eadax ‘g # dual STTys ‘guumy -> duwea3
*a8uey> jou saop pueiado JO gSW ‘1 - dws) —— dueg

T + 821 -~ 831 “8ax jo gg — X0

n ‘uorezado sty3z 3ewedax ‘g # dwd3 STTym ‘guwy — duwe3
*a8uey> jou saop pueiado Jo gSW ‘1 - dway -~ duwe3

¢ + (wouw) -~ (wauw) ‘(waw) jo gST —— 1D

n ‘uorijerado syl jeadaa ¢ # dwsl aTTym ‘1) — duaz
*a8ueyd jou saop pueiado jo gsy ‘1 - dusy —— duwajy

? + 321 — Bax “3ax jyo ggT - 10

n ‘uotjeiado styl 3eadax ‘g # dway ayyym ‘1) — duwasg
*a8ueyd jou saop puerado jo gSK

n 0= A ‘C + (wsu) — (waw) ‘(maw) jo gs7 — 1)

uofiezadp

S3ITYs jo zaqunu

ut
Lz/61

u

u4

Lz/61

U+

vZ/91

LI A

v2/91

$3207)

S-€

S-€

Lt

ka4

s914q

u

0 pom

0 pou

TT1

1 pou

M

00

[}

0

S9¢L 0T1CZ€E
3pod uorjeiadp

guuT ‘wom

guuyt ¢‘8ax

10 ‘wam

10 ‘821

1 ‘wam

1 ‘8ax

—_—_—

104

UOT3IONIISUT o3B30y

guuy ‘wam

gumy “8ax

10 ‘wam

10 ‘Saa

1 ‘wam

pueaadg

ViHS

STuomauy

o
N
|
O

Z S d A
s3ery

X0 oV

0~ A :X0 = (wdw) 3O gSW
1 — A X0 = (wew) jyo gSW
£odw3 4+ 7 x (weu) —» (wWam)
(waw) 3O gSW — XD ‘X0 — 4£odwuy

0 — A XD # 831 3O dSH
1 —~ A i = 831 3O 4SK
Kodwy 4 7 x 821 — 8oz
821 30 gSK — XD ‘A0 — AKodm

1 - dway — duwa3
7 + (wsuw) — (wam) ©(wam) JO gST — XI
suoy3eiado syl jeadax ‘g # T 2TFys ‘guui — dwa3

1 - dusy —» dwa3

X0 — 831 jo 4SH

Z + 821 — 8ax 821 jo gST — XD

ruotiezado sFy3 3eadax ‘g # IO 2TFym ‘guuwy — dwa)l

1 - dwudy -~ duwe)

k0 — (wouw) 30 gSK

7 + (wauw) —— (wam) ¢(waw) 3O gST — XI
ruoy3eaado syl 3eadax ‘g # 7D STTYM ‘10 — dwel

1 - duel — dma3

10 — 821 jo gSH

7 + 891 — 881 821 30 9ST — XJ

suor3ezado syl 3eadax Qg # T0 STTYM ‘10 — dmel

A :(wew) jo gSW BurmoTroF 3ITq = (waw) IO gSW
A f(waw) JOo gSW SumorT0] 319 # (waw) 3JO gSKW
) — (wew) 3O 4SH

7 + (wdw) — (waw) ¢(wdw) 3O gST — XD

1 —
1 —

— A 3891 jo gsu SurmoTToy ITq = 331 3O gSK
— A :821 jo gSW SurMOTTOF 3Tq # 821 JO GSH
10 — 821 jo gSW

Z + 891 — Bax ‘891 jo gs1 — KO

——

uofiexadp

S3JTYs Jo 1aqunu

¥2/91

ut
Lz/e1

u 4/

ut

Lz/61

w4y

vz/91

s}001)

-t

-t

u

8ax

0 pou

0 pou

011

S 91¢L

M0O0O0

0T1TZ€¢

apod uofiexadp

1 ‘wsm

1 ‘8ax

gumy ‘waw

guuy ¢8ax

10 ‘waum

10 ¢8ax

1 ‘wau

1 “8a2x

puexadg

0108

Jod

JTuowauy

C-21

Z S d A
s3e1y

10 oV

1 - dway — duay

£odmy — 821 30 gs|

7 + 81 — 8azx

' 821 30 gST — 9 ‘X0 — £oduy

uoyiezado syy3 jeadex ‘g = n 3TTYM ‘1) — duwal

0 — A :(wem) Jo gSK BuUTMOTTOF ITq = (Wam) Jo gSK
T — A :(wew) jo gSKH BUTMOTTOF 3Tq = (Waw) 3O gSK
£5du3 — (wam) jo gsy

? + (wem) —~ (wam)

(wow) 30 gS7 —~ %) ‘X0 — £ddm3

1821 jo gSW Surmoryoy 3Tq = 831 Jo gSW
1321 jo gSW BuTMOTTOF 3Tq # 821 Jo gSW
Aodmy -~ 8ax jo gSH

7+ 81 - 3Bax

831 3o gST —~ 1) ‘X0 — £odmy

i

= >

S3IJTYS Jo Iaqunu

uyy

%2/91

4

-z

4

S3ITYS jJo Iaqunu :

1 - dusal — duwaj

£odwy + 7 x (waw) — (wouw)

(wow) 3o gSH — XD ‘X0 — £odm

uoriexrado syy3 3eadex 0.4) STTYM ‘guut — dmaj

1 - dusl — duag

£odwy 4+ 7 x 891 — Sox

391 3O gSH —~ 1) ‘X0 — £odun

uot3jerado siy3 3eadaxr ‘g #) BTTym ‘guuy —— dwajy

1 - dusl — duma3

£odmy + 7 x (wam) — (wom)

(uwsw) 3o gSW — xJ ‘i) — Kodwy

uorjeiado sty3 3eadax ¢g # XD 2TTyYm 19 — dwe3

1 - dusl - duwa3

£odmy 4+ 7z x 821 — S8ax

821 3o gSW — %) ‘X0 — £>dm

uorjeiado syy3 jeadax g # X0 9TTym .,mo — duwa3

uoyieiadp

Lz/61

u+

ut
Lz/61

Uy

SY201)

S-€

s334g

u

—

—

—

0TT MTOO

opomw MOO0O

0TT MOOO

OPo”w MOOO

0OTT MOOO

opow MTO0O

0OTT MTOO

S9L 0T1CZC€E!

apod> uoyjexadg

10 “8ax

1 ‘uwsm

1 ‘831

guuy ‘mem

guuy ¢Jax

10 ‘wam

10 ‘8ax

puexadg

o2 (0):S

97108

JTuomauy

C-22

% +ds =~ dS
(Z +4dS ‘€ +dS) =~ sd
(ds ‘1 +4ds) — 0d

antea-dod + 45 = dS ‘T + dS —~ dS
(ds ‘1 +ds) = 0od

¢ +dS — ds
(ds ‘1 +4ds) — od

(zgaadwam) — 04 ‘(7 + zgiadwsm) —~ gg
% - dS =~ dS
0d =~ (% -4ds ‘€ -4dS) ‘0d ~ (Z -dS ‘T - dS)

39s330 — 9g ‘89s — g4
% - ds —~ dS
0d = (¥ -dS ‘€ -ds) ‘0d -~ (z -ds ‘1 - 4d9)

(9113dwdw) — g
z-ds— ds ‘0d ~ (z-4s ‘1 - 4a9)

7z -ds — 4s
9113d831 — 04 ‘Od —~ (¢ - dS ‘1 - 4S)

dstp + 04 = 0d
¢ -dS — dS ‘0d =~ (T -4ds ‘1 - 4ds)

1 - dway — dua3

£odwy —~ (wemw) jJo gSK

7 + (wam) —~ (mam)

(wew) 3o gST == XD ‘X0 —— £Kddm

n x uoyaeiado STyl Ieadax Q #) °TFys ‘gumuy — duwe3

1 - dwey — dua3

£>dwy — 321 3o gSW

7 + 891 — 8ox

331 30 gST — XD ‘XD — Kodm

n x uofieiado sTy3l 3eadar O # T ATFYA ‘guuy — duwo)l

1 - dwsl — dua)

£oduy —~ (waw) Jo gSW

7 %+ (wdu) —= 8ox

(waw) 3o gST — XD ‘X) — Kodwy

n x uofiexado sTyl 3eadax ‘Q # 10 ST¥yYm 10 — dual

Z S d AKXV

s3e11 uoyiexadp

6z/12 1 T10T1
ye/0T € 0100
61/S1 1 T1T00
Ly/1€ =2 wew T T OQPOW TTTI
62/12 S ot1To0Tl
1€/¢€T -z wom Q[QoPom TTTTI
81/%1 [4 821 01011 TITI
0z/91 € 0o0o0T

$3JTYS JO 1a2qunu : u

ut

Lz/61 S-€ wew [[Qpow M QOO

u o+ € 821 1T T10TT MOOO
u+

L2/61 =T wem [] QPOW MTOO

0OTZEYS9L O0TCE

$)20T) sa14g apod uotjexaadp

01

1

1

antea-dod

zg1ydwam

s0oxd-a1e3y

91a3duwau

97113d821

s0ad-1esu

act.S

TV

SUOT3IONIISUT [013UO0D 2UFINOIQNg

00TT

oo0TT

ToT1TI

YS$9L

guumy ‘wmaw

¢8ax

10 ‘wem

pueiadg

o2 (02§

dTuowauy

C-23

sweij }oelS Jo 3sodsT@ Q1/9

aweij Yoelg maN aiedaig ¥

3yoe3s ay3 woxy sia3ysBex dog ¢//gh

¢ +ds — ds

¥ ¥ ¥4 ¥4 ¥ (dS ‘1 +dS) — mMsd zi/8

¢ +dS — dS

18q°0sa‘ss : 8aas s ‘1 +4ds) — 8a1s z1/g

¢+ ds — ds

(ds ‘1 +dS) — 91821 z1/g

¢ +dSs —~ dS

(ds ‘1 +ds) — (91waw) gz//1

UoFsualxa u8ys ‘1 = s uaYy ‘7 - ds — ds Z1/8 10

umy —

(z

~ds ‘1 - 4as) 11/L

Jde3IS 3yl uo s133sydax ysngd /9/¢g

MSd —

3215 —

91891 —

(9Twam) —

(z

(z

(¢4

¢ - ds — ds
-ds ‘1 -ds) zi/s

¢ -ds — ds
-ds ‘1 -ds) zi/8

¢ -ds —~ ds
-ds ‘1 -ds) zi/8

¢ -ds —~ ds
-ds ‘1 -4ds) 9z/81

antea-dod + 4§ — dS ‘% + dS — dS
(Z+dS ‘€ +dS) — sd
(ds ‘1 +dS) — 2d Z¢/%2

Z S d AZXOV
s8ery

uor3eradp syo01n

1

s334g

0

SSa1ppe uaAs

$S31ppe ppo : (1 - guwy) QF

100100
000TO0O

T0000T

TorTIO

11 18axs g

821 1190

wemw Qg QOoPOW TTTTOO

0SoTOTI

00000T

ooTrTTITIO

01 183as o

81 o010

wew gy T POW OTTTTITI

010100

TZE€EYS9L 0TC2€EVYS
3apod uofjexaadg

T1

(1 - swuyr) z1 + 81

+ 27 ¢ 1 gumwy uaym
€1 ¢ 0 = guwf uayy : x

4S04S1d
WU ‘gTuUuY FYVIAUL

q
MSd
8a1s
91821
9Tusu dod

'y

MSd
8aas
918ax

9Tmam HSNd

SUOT3IONIISUT UOTIeIado yoesg

T1

9L

anyea-dod

pueiadg ofuomauy

C-24

Z S d AXDOV
s3erq

gdsTp-3x2 +

I=AASIT

0=4d 3%

1 =d737

0=S5373T

1=581737T

0=2 AXDIJIT

1 =2 AKX JIT
0=1237F

1 =237

0 = XD 3T

T =X 37

0 =A7JF

dd —~ 0d T=A73T
(zg1dwam) — 04

(z + zgaadwsw) — gq
3188330 — 3d

89s — gd
(9113dwew) — g
9713d891 - 2g
gdsTp-3xe + 0d — 0d
dstp + 0d — 0d
uotaexadg

s¥201

sa14g

0T1?e

T0Tpouw T

00T pow |

oo0TTIT I

€%YS9L 0

0

1

0T

(2%

apod uorieiadg

TTT1O0

13qeT-310Yys

11e

0dd

add

d

NE

e

HNE

ZNd
Ing

A:S
agq

NG
Jol.t:

14
o

ANE

Ag

SUOT3ONI3SUT Youeiq [BUof3Fpuoy

TIruI

zg1aduam

T2qeT-18]
9113dwam
91a13d8ax

T3qer-310ys

Taqer-1eau

ad

puezadp ojuomauy

SUOTIONIISUT youeag

C-25

(W XU T +49xU) = dg “(T+14x

9 -ds =~ 4s ‘od
‘sd =~ (% - ds ‘¢ - ds) ‘Msd

8UUT = u
U ‘g 4+ 4 xXUuU) - gq
00—~ @
= (9 - ds ‘s - 4ds)
= (2 -ds ‘1 - ds)

9+dS =~ dS ‘(¥ +dS ‘S + dS) — MSd

4% ¥ 9 ¥ ¥ ‘(T+4ds ‘¢c +dS) — sd

‘(ds ‘1 +ds) -~ 0d

(91°4T) —~ 0d “(81°61) — sa

9 - ds -~ 4s ‘od
Sd —~ (¥ - dS ‘¢ - 4S) ‘msd

(XU ‘T +9xU) —~ 059 “(Z+4x

I -ds = ds ‘0d
Sd =~ (¥ - dS ‘¢ - dS) ‘MSd

0~~~ Mg ‘0 — dI
~ (9 - 45 ‘¢ - as)
~ (Z-43S ‘1 - as)

1 = A uayy

UUT = u
U ‘C + ¥ xXU) - gq
0 -~ eg ‘0 — a1
> (9 - ds ‘s - as)
— (Z-4ds ‘1 - 4as)

(Z1'€1) =~ 2d “(41°61) — sa

9 -dS =~ ds ‘Od
Sd =~ (% - ds ‘¢ - dS) “‘MSd

"

"

"

8dstp-3xa + 04 — 0q

2 S d AX
s8erq

0 —~ Mg ‘0 —~ 4I
= (9 - ds ‘s - as)
-~ (z-4as ‘1 - as)

0 =MD 3ITF

0 # M0 3T
T - M=

0 # MD PUB [= Z 3T
1 - M) =M

0 # MO PUB Q0 = Z IT
T -M)=HMD

0=2A(AAS) IT
I =2 A(AS) IT

0=AAS3IT

uojjeaadg

85/8¢

6€/LT

€/
09/0%

85/8¢

86/8¢

/91

syo019

€ TTTTTITTIT 1

0TZEYYS9L 0
so14g

0TI

TeC¢

3pod uorjeaadp

guumy RANIE
1ITd
AMg
(€ %)
gumy
€ ng

SUOTIONIISUT 3dniTajul

" zMo4

n ZN9Q

“ dZNEaQ

" ANZNEQ
n 199
“ 41

T2qer-310ys o4

puexadp oTuomauy

C-26

¥ ¥ ¥ ¥4 ¥ ¥

Z S d A XDV

s8etd

9 - ds —~ dS ‘0d —
‘sd ~— (% - dS ‘€ - dS) ‘MSd —

(XU ‘T + 49 xXU) — 03 ‘(C+HyXu‘g+Hhxu —> g

1 — @
(9 - ds ‘g - 4ds)
(z - ds ‘1 - 4as)

9 +dS — dS ‘(¥ +dS ‘S + dS) — Msd

‘(z +dS ‘¢ +4ds) —

zaqunu Buyrdues urd 704

Sd ‘(dS ‘T +dS) — 0od

x139ad apriisao juauBag
uof3zexadg oN

(uwsw) —~ snq elep
uoyiexadp oN

(msuw) —— snq e3ep
uof3exadp oN

XF3a1d Y207 sng

1= 11

0 — 141

T u 1TeM pue T1od

ITBH 04D

(0z°12) —~ 0d ‘(zz°€T) — sd

9 -ds —~ 4s ¢

0 — Mg ‘0 — 43I
2d =~ (9 - dS ‘G - dS)

‘Sd =~ (% - dS ‘€ - dS) ‘MSd — (¢ - 4S ‘1 - dS)

91821 > (7 + zgwsw)

10 91831 « (Zgwouw) uayy

uor3iexadp

86/8¢ €
6€/1L2 [4
4 1
€ 1
ST/11 -z
4 4
ST/11 -z
4 4
4 T
4 1
4 1
ug + ¢ 1
4 1
9z/81
%8-18/
96-€§ a4
S$)201) sa14g

T0TTOTTIT TO

TOTTITITIT 1O

waw X X X pow X I
ZZZARXXKTIT X1
wem X X X pow X X

ZZZXXAXTT1 XX

wew 881 pom QT

0TZEYS9L O

110

110

189as

00T

000

2Eew

2po> uofieaadg

T11 guuE NTIVD
TT1T1 WAL
0808
iSS “iSd “:TSQ ‘:0ST ¢ x
100 ¥
00T dON
110 wam ‘do-djy
TT1TO0 do-djy 2044
0T 1 waw ‘do-dy
0T T do-dj 10d4
TT11 A001Snd
TT11 Ia
I11 1a
00T T10d
T11 LIVH
SUOTIONIISUT [0IJUOD (14D
110 zewdw ‘973ax ANINHD
$91L
puexadg OTuomauy

c-27

NEC cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

NEC reserves the right to make changes any time without notice.
© by NEC Electronics (Europe) GmbH

NEC OFFICES

NEC Electronics {Europe) GmbH, Cbeirather Str. 4, D- 4000 Dissseldorf 30, W.-Germany, Tei. (02 11) 6503 01, Teiex 858 996-0
NEC Electronics (Germany) GmbH, Oberrather Str. 4, D -4000 Dusseldorf 30, Tel. (0211) 650302, Telex 8 58996-0

- Hindenburgstr. 28/29, D - 3000 Hannover 1, Tel. (0511) 881013-16, Telex 9230109

- Arabellastr. 17, D-8000 Munchen 81, Tel. (089) 4160020, Telex 522971

- Heilbronner Str. 314, D- 7000 Stuttgart 30, Tel. (07 11) 890910, Telex 7252220

NEC Electronics (Benelux), Boschdijk 187 a, NL-5612 HB Eindhoven, Tel. (040) 44 58 45, Telex 51923

NEC Electronics (Scandinavia) - Box 4039, S-18304 T4by, Tel. (08) 7567 245, Telex 13839

NECElectronics (France) S.A., Tour Chenonceaux, 204, Rond Pointdu Pontde Sévres, F-92516 Boulogne Billancourt, Tel. (01)6099004, Telex203 544
NEC Electronics ltaliana s.r.l., Via Cardano 3, 1-20124 Milano, Tel. (02) 67 09108, Telex 315355

NEC Electronics (UK) Ltd., Block 3 Carfin Industrial Estate, Motherwell ML1 4UL, Scotland, Tel. (06 98) 732221, Telex 777 565

	03154147 ================.tif
	03154148.tif
	03154149.tif
	03154150.tif
	03154151.tif
	03154152.tif
	03154153.tif
	03154154.tif
	03154155.tif
	03154156.tif
	03154157.tif
	03154158.tif
	03154159.tif
	03154160.tif
	03154161.tif
	03154162.tif
	03154163.tif
	03154164.tif
	03154165.tif
	03154166.tif
	03154167.tif
	03154168.tif
	03154169.tif
	03154170.tif
	03154171.tif
	03154172.tif
	03154173.tif
	03154174.tif
	03154175.tif
	03154176.tif
	03154177.tif
	03154178.tif
	03154179.tif
	03154180.tif
	03154181.tif
	03154182.tif
	03154183.tif
	03154184.tif
	03154185.tif
	03154186.tif
	03154187.tif
	03154188.tif
	03154189.tif
	03154190.tif
	03154191.tif
	03154192.tif
	03154193.tif
	03154194.tif
	03154195.tif
	03154196.tif
	03154197.tif
	03154198.tif
	03154199.tif
	03154200.tif
	03154201.tif
	03154202.tif
	03154203.tif
	03154204.tif
	03154205.tif
	03154206.tif
	03154207.tif
	03154208.tif
	03154209.tif
	03154210.tif
	03154211.tif
	03154212.tif
	03154213.tif
	03154214.tif
	03154215.tif
	03154216.tif
	03154217.tif
	03154218.tif
	03154219.tif
	03154220.tif
	03154221.tif
	03154222.tif
	03154223.tif
	03154224.tif
	03154225.tif
	03154226.tif
	03154227.tif
	03154228.tif
	03154229.tif
	03154230.tif
	03154231.tif
	03154232.tif
	03154233.tif
	03154234.tif
	03154235.tif
	03154236.tif
	03154237.tif
	03154238.tif
	03154239.tif
	03154240.tif
	03154241.tif
	03154242.tif
	03154243.tif
	03154244.tif
	03154245.tif
	03154246.tif
	03154247.tif
	03154248.tif
	03154249.tif
	03154250.tif
	03154251.tif
	03154252.tif
	03154253.tif
	03154254.tif
	03154255.tif
	03154256.tif
	03154257.tif
	03154258.tif
	03154259.tif
	03154260.tif
	03154261.tif
	03154262.tif
	03154263.tif
	03154264.tif
	03154265.tif
	03154266.tif
	03154267.tif
	03154268.tif
	03154269.tif
	03154270.tif
	03154271.tif
	03154272.tif
	03154273.tif
	03154274.tif
	03154275.tif
	03154276.tif
	03154277.tif
	03154278.tif
	03154279.tif
	03154280.tif
	03154281.tif
	03154282.tif
	03154283.tif
	03154284.tif
	03154285.tif
	03154286.tif
	03154287.tif
	03154288.tif
	03154289.tif
	03154290.tif
	03154291.tif
	03154292.tif
	03154293.tif
	03154294.tif
	03154295.tif
	03154296.tif
	03154297.tif
	03154298.tif
	03154299.tif
	03154300.tif
	03154301.tif
	03154302.tif
	03154303.tif
	03154304.tif
	03154305.tif
	03154306.tif
	03154307.tif
	03154308.tif
	03154309.tif
	03154310.tif
	03154311.tif
	03154312.tif
	03154313.tif
	03154314.tif
	03154315.tif
	03154316.tif
	03154317.tif
	03154318.tif
	03154319.tif
	03154320.tif
	03154321.tif
	03154322.tif
	03154323.tif
	03154324.tif
	03154325.tif
	03154326.tif
	03154327.tif
	03154328.tif
	03154329.tif
	03154330.tif
	03154331.tif
	03154332.tif
	03154333.tif
	03154334.tif
	03154335.tif
	03154336.tif
	03154337.tif
	03154338.tif
	03154339.tif
	03154340.tif
	03154341.tif
	03154342.tif
	03154343.tif
	03154344.tif
	03154345.tif
	03154346.tif
	03154347.tif
	03154348.tif
	03154349.tif
	03154350.tif
	03154351.tif
	03154352.tif
	03154353.tif
	03154354.tif
	03154355.tif
	03154356.tif
	03154357.tif
	03154358.tif
	03154359.tif
	03154360.tif
	03154361.tif
	03154362.tif
	03154363.tif
	03154364.tif
	03154365.tif
	03154366.tif
	03154367.tif
	03154368.tif
	03154369.tif
	03154370.tif
	03154371.tif
	03154372.tif
	03154373.tif
	03154374.tif
	03154375.tif
	03154376.tif
	03154377.tif
	03154378.tif
	03154379.tif
	03154380.tif
	03154381.tif
	03154382.tif
	03154383.tif
	03154384.tif
	03154385.tif
	03154386.tif
	03154387.tif
	03154388.tif
	03154389.tif
	03154390.tif
	03154391.tif
	03154392.tif
	03154393.tif
	03154394.tif
	03154395.tif
	03154396.tif
	03154397.tif
	03154398.tif
	03154399.tif
	03154400.tif
	03154401.tif
	03154402.tif
	03154403.tif
	03154404.tif
	03154405.tif
	03154406.tif
	03154407.tif
	03154408.tif
	03154409.tif
	03154410.tif
	03154411.tif
	03154412.tif
	03154413.tif
	03154414.tif
	03154415.tif
	03154416.tif
	03154417.tif
	03154418.tif
	03154419.tif
	03154420.tif
	03154421.tif
	03154422.tif
	03154423.tif
	03154424.tif
	03154425.tif
	03154426.tif
	03154427.tif
	03154428.tif
	03154429.tif
	03154430.tif
	03154431.tif
	03154432.tif
	03154433.tif
	03154434.tif
	03154435.tif
	03154436.tif
	03154437.tif
	03154438.tif
	03154439.tif
	03154440.tif
	03154441.tif
	03154442.tif
	03154443.tif
	03154444.tif
	03154445.tif
	03154446.tif
	03154447.tif
	03154448.tif
	03154449.tif
	03154450.tif
	03154451.tif
	03154452.tif
	03154453.tif
	03154454.tif
	03154455.tif
	03154456.tif
	03154457.tif
	03154458.tif
	03154459.tif
	03154460.tif
	03154461.tif
	03154462.tif
	03154463.tif
	03154464.tif
	03154465.tif
	03154466.tif
	03154467.tif
	03154468.tif
	03154469.tif
	03154470.tif
	03154471.tif
	03154472.tif
	03154473.tif
	03154474.tif
	03154475.tif
	03154476.tif
	03154477.tif
	03154478.tif
	03154479.tif
	03154480.tif
	03154481.tif
	03154482.tif
	03154483.tif
	03154484.tif
	03154485.tif
	03154486.tif
	03154487.tif
	03154488.tif
	03154489.tif
	03154490.tif
	03154491.tif
	03154492.tif
	03154493.tif
	03154494.tif
	03154495.tif
	03154496.tif
	03154497.tif
	03154498.tif
	03154499.tif
	03154500.tif
	03154501.tif
	03154502.tif
	03154503.tif
	03154504.tif
	03154505.tif
	03154506.tif
	03154507.tif
	03154508.tif
	03154509.tif
	03154510.tif
	03154511.tif
	03154512.tif
	03154513.tif
	03154514.tif
	03154515.tif
	03154516.tif
	03154517.tif
	03154518.tif
	03154519.tif
	03154520.tif
	03154521.tif
	03154522.tif
	03154523.tif
	03154524.tif
	03154525.tif
	03154526.tif
	03154527.tif
	03154528.tif
	03154529.tif
	03154530.tif
	03154531.tif
	03154532.tif
	03154533.tif
	03154534.tif
	03154535.tif
	03154536.tif
	03154537.tif
	03154538.tif
	03154539.tif
	03154540.tif
	03154541.tif
	03154542.tif
	03154543.tif
	03154544.tif
	03154545.tif
	03154546.tif
	03154547.tif
	03154548.tif
	03154549.tif
	03154550.tif
	03154551.tif
	03154552.tif
	03154553.tif
	03154554.tif
	03154555.tif
	03154556.tif
	03154557.tif
	03154558.tif
	03154559.tif
	03154560.tif
	03154561.tif
	03154562.tif
	03154563.tif
	03154564.tif
	03154565.tif
	03154566.tif
	03154567.tif
	03154568.tif
	03154569.tif
	03154570.tif
	03154571.tif
	03154572.tif
	03154573.tif
	03154574.tif
	03154575.tif
	03154576.tif
	03154577.tif
	03154578.tif
	03154579.tif
	03154580.tif
	03154581.tif
	03154582.tif
	03154583.tif
	03154584.tif
	03154585.tif
	03154586.tif
	03154587.tif
	03154588.tif
	03154589.tif
	03154590.tif
	03154591.tif
	03154592.tif
	03154593.tif
	03154594.tif
	03154595.tif
	03154596.tif
	03154597.tif
	03154598.tif
	03154599.tif
	03154600.tif
	03154601.tif
	03154602.tif
	03154603.tif
	03154604.tif
	03154605.tif
	03154606.tif
	03154607.tif
	03154608.tif
	03154609.tif
	03154610.tif
	03154611.tif
	03154612.tif
	03154613.tif
	03154614.tif
	03154615.tif
	03154616.tif
	03154617.tif
	03154618.tif

